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ABSTRACT 

This group thesis aims to explore the “In-to-Net Bot” system designed to explore 

“catching a ball” with a robot. It aims to contribute to solving logistics and low 

mobility tasks. The integration of the Dobot Magician (manipulator robot), the 

Microsoft Kinect, OpenCV software library, and ROS interfaces, are thoroughly 

explained for the implementation of a physical model. The integration of the 

Gazebo simulation environment, Rviz and Moveit! frameworks, and ROS nodes 

are also detailed for the implementation of a virtual model enhanced with 

reinforcement learning. The main coding languages are C++ and python. 

A successful physical catching robot has been designed to catch dropped balls. 

A satisfactory positioning error of 5.1787±1.3081 mm (95% confidence interval) 

with the manipulator has been reached. The average frame rate per second on 

obtained didn’t meet the expectations on the other hand, as it reached only 7 to 

10 frames per second (instead of 50 fps announced by Microsoft for Kinect 

version 2). Moreover, the movement of the robot arm is slightly slower than the 

ball motion after it has been thrown and takes up to 1.5 seconds in average. 

Consequently, the catch rate over 100 ball drops has been evaluated at 15%. 
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1 Introduction 

People with less mobility are required to throw things for them to reach a place. 

A system that helps with this can be very useful.  A robot that can be useful within 

a workshop to collect nuts and bolts or throw rubbish away as the worker stays 

in place.  On a larger scale this could help with for fruits on high trees which may 

be dangerous when falling to the ground or are required not to be damaged e.g. 

Coconuts are thrown, felled or naturally fall from high heights, where there is 

always a risk of a free-falling coconut hitting an animal or person.  

The main objective was:  To demonstrate a concept by designing a system for 

the Dobot Magician to “catch” a ball. The team consisted of 3 novice MSc 

Robotics students with only approx. 75 days to come up with a solution. 

1.1 Concept of ball catching 

The concept of ball catching has been a topic for both robotics and neuroscience 

in regards with a human or animal being able to catch an object.  Even the ability 

to “catch” or grip on to a static object such as a ledge or tree branches is included 

in such research.  Research in to the learning that occurs by failing first, such as 

a baby learning to walk or to eventually, when it becomes a heuristic of the 

human, where they don’t have to put effort or thought in to walking. 

The most recent paper (Doctoral Thesis – 2017) addressing the machine learning 

problem associated with the ball catching task is [1].  The team developed the 

abstract aspect of machine learning and the concrete one to help engineers 

design more effective solutions to Reinforcement Learning (RL) problems. The 

“spectrum of decomposability” is introduced to “characterise problems and 

solutions in decision making”. It consists in dividing a problem into several easier 

subproblems to solve it. 

 

Concerning the ball catching problem, they compare the heuristics approach to 

the optimisation-based approach, as shown in Table 1.1. The result is that the 

best approach heavily depends on the assumptions made. 
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Table 1.1 - Comparison heuristics and optimisation approaches 

Method Heuristics Optimisation based 

Type Specialist Generalist 

Definition 

“Humans employ heuristics to 

reactively choose appropriate 

actions based on immediate 

visual feedback” [2] 

Practical method, not optimal 

“Predict the ball trajectory to 

plan future actions” [2] 

Input 

representation 

Angular representation of the 

ball position (easily extracted 

from a camera sensor) with 

respect to the agent 

Cartesian representation 

Setup Model-free approach Model-based approach 

Advocates Chapman [3] Belousov [2] 

Strategy 

Linear optical trajectory 

(LOT) 

 

Based on the rise of the 

tangent angle 𝜃  between 

ground plane and the ball at 

constant rate. An illustration 

is provided in Figure 1.1. 

Linear quadratic Gaussian 

control (LQG) or Model 

Predictive control (MPC) 

 

Predict the impact point of the 

ball using the ball dynamics 

Advantage 
Performs well with systematic 

perturbations (air resistance) 

Adapts well to Gaussian 

noise (Bayesian filtering) 

Drawback 
Harder to transfer to artificial 

systems 

Generally applied in closed-

room environments (not 

baseball stadiums) 
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The ball catching task is defined as follows: “build a robot that runs such that it 

intercepts a baseball flying high up in the air before it hits the ground”. They start 

by setting up the RL problem and addressing common issues in RL such as the 

“representation learning”, “curse of dimensionality”, “temporal credit assignment”, 

exploration vs. exploitation dilemma”. 

 

  

Figure 1.1 - Linear optical trajectory from Chapman 
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1.2 Scope and objectives 

The model proposed to study the catching problem contains: 

• Dynamics of the ball 

• 2D movement of the agent 

• Task (minimisation problem) 

• Angular representation and cartesian representation 

Note that the problem set up is slightly more complicated in the paper mentioned 

previously [1], since the robot is running backwards and may have to run forward 

without seeing the ball. In our robot catcher problem, an assumption can be 

made, stating that the robot stands still and can see the ball at any time. 

The first objective of the study is to effectively convert ball motion into a simple 

entity relative to the robot/viewer. According to Table 1.1, on the one hand, 

Chapman proposes an angular representation based on the rise of the tangent 

angle 𝜃  between ground plane and the ball. On the other hand, Belousov 

advocates a cartesian representation and a prediction of the landing point of the 

ball using the dynamics and optimisation theory. This representation is easily 

applied to robots thanks to control theory and recent robotics advances. On the 

contrary, Chapman’s representation is better suited to humans. Therefore, the 

control theory approach and the cartesian representation have been considered 

to tackle the issue of representing the ball from the robot point of vue. 

The second objective resulting from the representation consideration is to use the 

ball landing point estimation to move the robot end-effector to this point. It 

concerns the control of the robot in conjunction with ball motion representation. 

 

The third dimension of the study is to extend the control perspective of the robot. 

The RL problem stated in [1] is addressed in a 2D space (lower-dimensional 

camera). The camera model, the controller and the biases for learning (Linear P-

control policy, policy search using CMA-ES for instance) are introduced. Results 

of the RL experiment show that “it is possible to learn a successful ball catching 

policy directly on observations, using generic reinforcement learning” [1]. 
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Moreover, the policies learned are like the angular controllers (Heuristic method). 

However, since the result depends on the choice of the approach (model-free or 

model-based), a hybrid approach is possible. 

Since the machine learning seems to be successfully applied to ball catching, the 

third objective of the study is then to consider reinforcement learning to improve 

the control of the robot to increase the catching rate. It is also to confirm whether 

reinforcement learning can play a significant role in ball catching for future 

research.  
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2 Literature review 

2.1 Historical 

To begin with, early research in robotics control, computer vision, artificial 

intelligence, machine learning, and mathematical techniques have been 

investigated. We saw that all these early research projects form the basis of the 

current research of today which they have gone on to build on top of. 

As we wished to investigate machine learning methods such as reinforcement 

learning we looked in to the Q learning algorithm. In 1989, Watkins proposed Q 

learning algorithm in his PhD thesis [4] which is one of the most important 

algorithms in reinforcement learning for discretized setting. 

In 1994 Peter Corke in his PhD [5] demonstrated the ability to track an object or 

ball using a manipulator and camera system. 

A study conducted in 1994 by Das [6] on fly ball catching showed the use of 

machine learning / RL to solve the problem. They investigate whether the result 

from experimental psychology (i.e. Chapman) is enough for an agent to learn the 

task.  A single camera is also used in a mousetrap catching system in Buttazzo 

et al. [7].  This is similarly tested for a manipulator testbed for catching objects by 

Fernandez et al.[8]. 

Back in 1995, the famous 4DOF “WAM” arm [9] at the MIT was created and was 

able to catch a ball using active vision system. The object was located and 

tracked, then the camera and the manipulator were calibrated (common 

coordinated frame), then the path was generated by determining the catch point 

and finally the arm would move to the designated point in time. 

In 1997 the robot “Saika” developed by Nishiwaki [10] was able to localise a falling 

ball using 2 DDC cameras, predict the ball path and position its hand/basket at 

the catching point using inverse kinematics neural network method (three layered 

neural network with sigmoid function used). 
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2.2 Renowned research 

As we forayed further in to current methods we saw that there are several 

simulation environments available for our research area. These include 

environments such as Gym, Mujoco, Gazebo, Bullet, Roboshool etc.  

In the hope of going further with the machine learning approach, a simple “game 

of catch” [11] has been created by the Google DeepMind team to learn a control 

policy in a dynamic visual environment. The game is simple and involves only two 

objects: “a single pixel that represents a ball falling from the top of the screen 

while bouncing off the sides of the screen and a two-pixel paddle positioned at 

the bottom of the screen which the agent controls with the aim of catching the 

ball. When the falling pixel reaches the bottom of the screen the agent either gets 

a reward of 1 if the paddle overlaps with the ball and a reward of 0 otherwise”.  

The result shows that, after 20 million frames of training, the agent can catch the 

“falling ball” roughly 85% of the time. The recurrent attention model was tested, 

and “since the agent was not in any way told to track the ball and was only 

rewarded for catching it, this result demonstrates the ability of the model to learn 

effective task-specific attention policies”. 

The topic of the paper [11] might also be of interest, as the team proposes “a 

novel recurrent neural network model that is capable of extracting information 

from an image or video by adaptively selecting a sequence of regions or locations 

and only processing the selected regions at high resolution”. This can be a 

“cheaper” version of a machine vision algorithm using machine learning. 

In Lippiello et al. It was discussed that both in a 2D and 3D system a high frame 

rate is very ideal for accuracy [12]. However, it also discusses that if high frame 

rate cannot be achieved then rather than a two-camera vision system a one 

camera vision system would reduce computational cost and with improvements 

and effort put into the prediction algorithm would function well. This was also 

mentioned in Buttazzo et al. [7].  This is similarly tested for a manipulator testbed 

for catching objects by Fernandez et al. [8]. 
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Following on, Ribnick et al. discussed the localization of projectiles on its 

apparent motion in a stationary monocular view in 3D. It analyses sequential 

images and makes use of at minimum 3 images sticking to the least-squares 

algorithm [13]. Such a system is also used in Cigliano et al. where it uses a circle 

detection algorithm [14]. Ribnick et al proposed a Charge-Coupled Device 

camera mounted next to the manipulator whereas Cigliano et al. had one on top 

of a manipulator. Cigliano et al. also discussed how a stereo camera system is 

usually used for “RoboCup” competition humanoid robots. 

The paper from Belousov [2] mentioned before, states that the catching heuristics 

theories are in fact optimal control policies.  The method proposed relies on 

complex stochastic optimal theory rather than simple heuristics.  Unfortunately, 

there is no “generally accepted model that explains empirical observations of 

human interception of airborne balls”. 

Chapman’s theory LOT is introduced, as well as an enhanced version from 

McLeod [15] incorporating visual observations (generalised optic acceleration 

cancellation (GOAC)). McLeod adds a constraint to Chapman’s LOT, which is “to 

control the rate of horizontal rotation necessary to maintain fixation on the ball”. 

The optimal control problem under uncertainty is implemented using: 

• MPC approach 

• CasADi to compute the derivatives and cost function 

• Ipopt to carry out the non-linear optimisation 

Their results show that when the agent can continuously track the ball, the 

heuristics approach holds; when the tracking is interrupted (agent turning away 

from the ball to run faster), the optimal control theory answers the problem. 

The tracking interruption can also correspond to the object going out of the field 

of vue of a camera. This highlights the importance of control theory in our 

research. 

Chapman’s strategy has been implemented in a simulation, adding the “catcher’s 

own acceleration and the visuo-motor delay” in [16]. The Chapman’s theory was 

proven to be “robust against the effect of the catcher’s own acceleration on the 

optical acceleration of the fly ball and the introduction of visuo-motor delays” and 
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“robust against air friction. Some minor observations, however, were in 

contradiction with the theory.  A similar experiment has been conducted by Zaal 

and can be found in [17]. 

Kober et al. and Flash et al. mentioned that humans rely on motor primitives and 

reinforcement learning (RL) to learn new motor skills [18][19].  Kober et al. went 

on to show how reward-based RL can learn “single-stroke or rhythmic” tasks 

[20][21]. 

Ijspeert et al. suggested the use of nonlinear differential equations whereby two 

dynamic systems are used but one system drives the others for a more stable 

system [22]. This means the systems do not require to learn entire dynamical 

systems. 

Previous work of Kim [23] used a iCub robot in the simulation environment and a 

7-DOF robot arm (KUKA LWR 4+)  in the real world experiment. Similarly, the 

work of Bäuml [24] implemented their proposed method by using a DLR-LWR- III 

arm with DLR-Hand- II which are a 7-DOF robot arm and a 12 DOF hand. 

From the sensor’s aspect, works form Rollin’ Justin [25] [26] [27] used stereo 

cameras and IMU to determine the robot pose. They managed to achieve a 

catching rate of almost 80%. The work of Kim [23] which used iCub also had 

stereo cameras (double lens, bi-focal lens or 4 cameras - 2 per eye) according to 

the wiki of iCub [28]. 

Nemec et al. and Kober et al. compares the two approaches of using Dynamic 

motion principles and reinforcement learning.[18][29][20]   In a machine vision 

system the use of Kalman filter OpenCV and ASUS Xtion PRO LIVE camera 

system are used for Disney research in a catch and juggling robot named Sky.[30] 

This is a multi-camera system.  They also use OpenNI to track the human 

throwing the ball. 
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A more recent system by researchers at Princeton University, Google, Columbia 

University, and, Massachusetts Institute of Technology, authored by Zeng et 

al.[31] explores the tossing robot with the use of the UR5 manipulator as well as 

later on a catching system with another UR5 systems working in tandem. This 

research was published at the half-way point about one month (31 days) after we 

started our project and is a highly advanced system. 

 

The components of recent works used can be summarized: simulation 

environment, robot arm, robot manipulator and visual sensors (cameras). The 

simulation environment can test algorithms in a virtual environment without real 

experiment setting up for the time efficient and cost. Different models can be 

created and transfer to the simulation environment. In the real application, a robot 

arm is need for the experiment. It will define the reaching space for the 

experiment. The manipulator contains the robot’s catching ability and need to be 

selected according to the experiment specifications.  

 

The fourth objective of the study (the first three objectives are detailed in section 

0) is then to create a virtual environment for the robot to test the control approach 

and to make it learn machine learning policies. 

 

 



 

11 

3 Project management 

3.1 Project initialisation 

The project has been led by 3 novice robotics students for a period of 75 days. 

During the project initialisation, a project breakdown structure composed of 6 

main tasks has been considered. These main tasks are presented in section 3.2. 

A thorough project risk assessment has also been carried out to prevent serious 

issues. It is displayed in Appendix B. 

A weekly basis for the meetings with the supervisors has been chosen to let 

enough time for the students to work on their respective tasks, but also to monitor 

them and prevent them from going off-topic. 

3.2 Task allocation 

For each main task, a leader has been chosen in order to equally distribute the 

workload. 

1. Literature review – Chirantan 

This main task includes: literature review, study of influent papers with regard to 

ball catching research. 

The Gantt is displayed in Figure C.2. 

2. Specifications – Yang 

This main task includes: analysis of the components, software, hardware used by 

the researchers (literature review) to meet the targets, analysis of the connection 

constraints (between components). 

The Gantt is displayed in Figure C.3. 

3. Implementation strategy – Achille 

This main task includes: basic algorithms considerations, hardware and software 

testing (before implementation). 

The Gantt is displayed in Figure C.4. 
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4. Implementation and coding – Yang 

This main task includes: debugging, creation of ROS network, communication 

between software/hardware and other components, assembling. 

It represents the main part of the project and is critical for the project. 

The Gantt is displayed in Figure C.5. 

5. Testing verification validation – Achille 

This main task includes: tests to validate the behaviour of the systems, re-

programming if needed. 

The Gantt is displayed in Figure C.6. 

6. Deployment and documentation - Chirantan 

This main task includes: deployment of the system and write-up of the 

documentation. 

The Gantt is displayed in Figure C.7. 

 

Overall, the workload tended to the following distribution: 

• Achille (40%) 

• Yang (40%) 

• Chirantan (20%) 

 

3.3 Time management 

With a time management technique, it has been planned to discuss with the 

supervisors and follow their guidelines in line with the deliverable dates for each 

progression of the project.  

The comparison between the expected duration of the main tasks and their real 

duration is highlighted in Table 3.1. 
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Table 3.1 - Comparison main task expected duration and real duration 

Task Expected duration Real duration 

Literature review 1 week 10 days 

Specifications 1 week 5 days 

Implementation strategy 3 weeks 20 days 

Implementation and coding 3 weeks 20 days 

Testing verification validation 1 week 14 days 

Deployment and documentation 1 week 6 days 

 

The Milestones (mostly secondary reports) are described in each Gantt chart 

displayed in Figure C.1. 

From Table 3.1, it can be noticed that the first three main tasks were completed 

in time. However, delay started to accumulate from the implementation strategy 

task due to compatibility and connection issues (which implied a non-negligible 

part of debug time). The implementation of the ROS control also added a 

significant delay. Finally, the reinforcement learning part has been slightly 

overlooked due to time constraints. 

 

 

 

 

 

 

 

 



 

14 

4 System specifications 

4.1 Performance 

The systems need to be able to process or compute data in order to predict the 

trajectory of a ball and probability of where and whether it will reach. Thus, the 

computer specs must be set and are necessary to train a reinforcement learning 

algorithm (or even a simple control algorithm). 

4.2 External Interfaces 

The inputs for the software system are the raw image data and measured 

distance which is captured by the stereo camera and ultrasonic sensor. The 

image data will give the information about current state containing the ball’s 

existence, position in the image. That information will be used by the software 

system for estimating the position, velocity, and training the robot’s optimal policy. 

The output is the action of the robot, which is its catching position. This position 

will be given to the motion planning function which can compute the inverse 

kinematics and then pass the results of required information about the joint angles 

to the controller to control the step motors. 

4.3 Hardware System 

The hardware system requires sensors, processors, computers, microcomputers, 

and vision sensors (passive and active). 

4.3.1 Dobot Magician 

The robot to be used is called “Dobot Magician”. It is a 4 DOF desktop fit robotic 

manipulator arm. It has inbuilt software and hardware of its own. The forward and 

inverse kinematics of the robot are given in [32].  
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The specifications for the Dobot can be found in [33] and the dimensions are 

shown in Figure 4.1. 

 

4.3.2 Microsoft Kinect  

Microsoft Kinect version 2 has been used. It has a wide-angle time-of-flight 

camera (ToF camera) and can process 2 gigabits of data per second in order to 

read its environment, however only usb 3.0 is supported. According to its 

specification [34], the working range is defined in Figure 4.2. The working 

distance for depth detection is from 0.5m to 8m and the working angles are 0-70 

degrees horizontally and 0-60 degrees vertically. 

 

 

Figure 4.1 - Dobot Magician dimensions and joint limits 
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4.3.3 Raspberry Pi 

Ubuntu OS (or other Linux OS) has been used on a computer to simulate and 

train machine learning/reinforcement learning algorithm. 

A single-board computer (SBC) like “Raspberry Pi”, shown in Figure 4.3, has also 

been used to connect extra components such as sensors. 

 

Figure 4.3 - A basic structure of a Raspberry Pi 3 Model B V1.2 

Figure 4.2 - Range of detection of Kinect V2 
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The Raspberry Pi 3 Model B is the 1st model of the 3rd generation of Raspberry 

Pi. It replaced the Raspberry Pi 2 Model B. It was released in February 2016 [35]. 

It has the following specifications as indicated by the “Raspberry Pi Foundation” 

itself [35]: 

• Quad Core 1.2GHz Broadcom BCM2837 64bit CPU 
• 1GB RAM 
• BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board 
• 100 Base Ethernet 
• 40-pin extended GPIO 
• 4 USB 2 ports 
• 4 Pole stereo output and composite video port 
• Full size HDMI 
• CSI camera port for connecting a Raspberry Pi camera 
• DSI display port for connecting a Raspberry Pi touchscreen display 
• Micro SD port for loading your operating system and storing data 
• Upgraded switched Micro USB power source up to 2.5A 

 

4.4 Functions 

The “In-to-Net Bot” is defined by two main functions, based on Figure 4.4 

The first main function is the ball catching function achieved by nonlinear 

optimisation control. The ball is detected by the sensors which give the necessary 

information to the controller which generated joint angles for the manipulator to 

catch the ball. 

 

The second main function is the ball catching function achieved by Reinforcement 

Learning. The ball is still detected by the sensors which give the necessary 

information to the controller which tries joint angle configurations for the 

manipulator to catch the ball. Those configurations are updated by the new policy 

at each throw. 
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Ball Controller ManipulatorSensors

 

Figure 4.4 - Product main function basis 

4.5 Architecture 

ROS is used in the project. It is a robotics middleware which collects necessary 

software for robots. It provides services such as hardware abstraction, low-level 

device control, implementation of commonly used functionality, message-passing 

between processes, and package management [36].  

By researching those physical engines, Gazebo is selected as our training 

environment in the 3D space as Gazebo is already implemented in ROS [36] and 

there are full documentation explaining the techniques inside it. 

The latest version of ROS is called Melodic Morenia, however the most widely 

used version is Kinetic Kame currently. The most common used and supported 

platform for installing ROS is Linux especially Ubuntu system [37]. The ROS 

Kinetic Kame is long term available for Ubuntu Xenial (16.04 LTS) and the 

recommended installation process is provided in [38]. 

In 2019, the work of X. Ling [39] used vision system to help robot harvesting 

tomato. Their system structures are divided into a hardware layer and software 

layer. Thus, similar approach can be made for our real time operating system, 

whose architecture is defined as Figure 4.5. 
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Figure 4.5 - Software architecture 

The functions will receive the data from sensors and then process them on the 

PC or Raspberry Pi. ROS is the middleware connecting the hardware and 

software together. The functions relation are presented in Figure 4.6, the 

decision-making function is the one we need to train with machine learning or 

deep learning. 

  

Figure 4.6 – Detail functions architecture 



 

20 

4.6 Implementation strategy 

The system is divided into 3 main categories: The Robot system (Dobot 

Magician), the sensors and the computing platforms. They all interact with each 

other and with the external actors (the human and the ball). Figure 4.7 describes 

the interactions between each sub-system and the type of interfaces required. 

Table 4.1 describes the interfaces in detail. 

  

 Figure 4.7 – Product perspective and interfaces 
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Table 4.1 - Interfaces description 

Interface Type Details 

Human / 

Ball 
PI The Human or user grabs the ball to throw it at the Dobot 

Human / 

Computer 
PI 

The Human can set up the robot using the computer. The user 

can also stop the experiment if needed. 

Ball / 

Stereo 

camera 

SI 
The Kinect detects the ball and analyses features used for 

control / machine learning. 

Stereo 

camera / 

Computer 

EI 

The Kinect is connected to the computer using a USB (3.0) 

cable and shares the data recorded about the ball (and the 

background). 

Net / 

Manipulator 
MI 

The net is attached to the Manipulator and represents the end-

effector the Dobot Magician. The ball thrown is caught in the 

net. 

Manipulator 

/ computer 
EI 

The Dobot is connect to the computer using a USB cable and 

is controlled using DobotStudio. 

Net / 

Ultrasonic 

sensor 

MI The Ultrasonic sensor is fixed onto the net. 

Ultrasonic 

sensor / 

Raspberry 

pi 

EI 

The Ultrasonic sensor is connected to the Raspberry PI to 

receive power and to share data to the computer. The 

connection is achieved using 1x 1kΩ resistor, 1x 2kΩ resistor, 

1x power interface board, 8x jump wires. The set-up is 

explained in [40]. 

Ultrasonic 

sensor / 

Ball 

SI 
The Ultrasonic sensor detects the passage of the ball through 

the net. 
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Raspberry 

Pi / 

Computer 

EI 

The Raspberry Pi is connected to the computer through Wifi, 

but the communication needs to be set up using 1x Ethernet 

cable, 1x SD card, 1x Putty client for Windows (explanations in 

[41]). 

Gazebo / 

Computer 
VI Gazebo is launched on the computer using ROS. 

 

The main user interfaces displayed on the computer are: 

• a custom DobotStudio interface to interact with the Dobot (and stop it in 
case an incident happens). It can also be a command prompt window. 

• a custom window displaying the outputs of the Dobot training (for Machine 
Learning method) and the outputs of Dobot tests (for nonlinear control 
method). 

 

The main user interfaces are aimed at the user, to help supervise the robot 

system. 

 

Memory constraints are crucial for the Machine Learning method. The RL 

program cannot be used on the Raspberry Pi directly because it generates heavy 

computational cost. Moreover, Gazebo is used to train the RL algorithm in the 

virtual environment, however it requires Nvidia or ATI graphics cards [42]. 

Besides, camera information is needed to view the robot state through Rviz. 

Those requirements can’t be met as Raspberry Pi doesn’t have a powerful 

enough GPU or any USB 3.0 port. A computer meeting the requirements is 

therefore chosen to handle stereo-camera connection and Gazebo virtual 

environment display [42]. 
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5 Implementation and testing 

5.1 Overview of the system 

The implementation has been divided into 2 main parts: 

• Physical ITNB (composed of a Kinect version 2, a Dobot Magician with a 

net to catch the ball, a table tennis ball for testing – shown in Figure 5.1) 

 

Figure 5.1 - Physical ITNB overview 

Dobot Magician 

Kinect version 2 

Net 

(table tennis ball size) 
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• Virtual ITNB (composed of a mechanical model of the Dobot Magician 

with a net to catch the ball, a model of a table tennis ball, a Kinect Gazebo-

ROS plugin – shown in Figure 5.2) 

 

This step follows the implementation strategy step where the components and 

the software have been chosen and tested. 

  

Figure 5.2 - Virtual ITNB overview 

Ball model 

Dobot model 

Kinect camera POV 
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5.2 Physical ITNB 

5.2.1 Mechanical structure 

The ITNB main mechanical structure is based on the Dobot Magician structure 

whose specifications are shown in [43] and in Figure 4.1. It is composed of 4 

degrees of freedom (4 DOF): one base joint, one shoulder joint, one elbow joint 

and one wrist joint to maintain the end-effector parallel to the “ground”, as shown 

in Error! Reference source not found., extracted from [44]. 

  

Figure 5.3 - DOBOT joint angles 
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The robot is made of ABS (Acrylonitrile Butadiene Styrene) engineering plastic 

and Aluminum Alloy 6061, therefore it is very robust. Moreover, its small size 

(height < 30cm) and its small weight (< 500 g) are adapted to laboratory testing 

without bulky security systems (fences, laser curtains…). 

The net, shown in Figure 5.4, has been designed using Catia V5 to fit the Dobot 

end-effector attachment point (prismatic shape). The hole only has a 0.5mm extra 

diameter than a standard table tennis ball. 

Due to 3D printing issues with the Dobot Magician (PLA material used), a 

temporary net made of Plexiglas and shown in Figure 5.1 has been used. 

  

Figure 5.4 - ITNB Net CAD design 
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5.2.2 Joint control 

As a first approach to control the position of the net, a forward kinematics model 

and an inverse kinematics model of the net have been considered. 

The forward kinematics model ensures that the net is correctly moved in the 3D 

space, depending on joint angles. The modified Denavit-Hartenberg (DH) 

parameters [45] provide a parametrisation for the forward kinematics model. The 

modified DH parameters for the Dobot and net are shown in Figure 5.5. 

 

 

 

 

 

 

 

 

  

𝐸 

𝜃4 
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𝑦0 
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𝜃2 

𝜃3 

𝑥3 

𝑦3 

𝑧3 

𝑎2 𝑎3 𝑎4 

Dobot net – top view 

Attachment to robot arm 

𝑎4 

𝑥𝑒 

𝑧𝑒 

𝑦𝑒 𝐸 

Figure 5.5 - Dobot forward kinematics model (DH parameters) 
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Table 5.1 gathers all the DH parameters needed to derive the forward kinematics. 

Table 5.1 - DH parameters for Dobot Magician 

Link 𝒊  
𝜶𝒊−𝟏 

(degrees) 
𝒂𝒊−𝟏 (mm) 𝒅𝒊 (mm) 𝜽𝒊 (degrees) 

1 0 0 𝑑1 𝜃1 

2 𝛼1 = 90 0 0 𝜃2 

3 0 𝑎2 0 𝜃3 

4 0 𝑎3 0 𝜃4 

5 0 𝑎4 0 end-effector (net) 

The dimensions of the Dobot Magician are indicated in Table 5.2. 

Table 5.2 - DH parameter values 

Parameter Value 

𝑑1 140 mm 

𝑎2 135 mm 

𝑎3 147 mm 

𝑎4 Defined by the net (12 mm) 

 

Using the transformation matrix from link {i-1} to link {i}, 

𝑇𝑖
𝑖−1 =  [

cos (𝜃𝑖) −sin (𝜃𝑖)    0                     𝑎𝑖−1

sin(𝜃𝑖) cos (𝛼𝑖−1) cos(𝜃𝑖) cos (𝛼𝑖−1) −sin (𝛼𝑖−1 ) −sin (𝛼𝑖−1)𝑑𝑖

sin(𝜃𝑖) sin (𝛼𝑖−1)
0

cos(𝜃𝑖) sin (𝛼𝑖−1)
0

cos (𝛼𝑖−1)
0

   cos (𝛼𝑖−1)𝑑𝑖

1

] 

The transformation matrix from end-effector {5} to the base {0} can be obtained, 

𝑇5
0 =  𝑇1

0 𝑇2
1 𝑇3

2 𝑇4
3 𝑇5

4  
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On the other hand, the objective of inverse kinematics is to determine the joint 

angles. The geometric method is used since it is the simplest method for this kind 

of problem. The method is inspired from [46]. 

A comprehensive explanation of the inverse kinematics equations is given in 

Appendix A. 

 

As a second approach to connect the Dobot to the other components of the 

physical ITNB, a ROS network has been created. Specifically, a ROS node 

(explained in section 5.2.2) depending on Dobot ROS Service (supplied by 

Dobot customer service), has been created to control the robot arm. An end-

effector offset has been included in the C++ functions to consider the position of 

the centre of the net (moved to a target position determined by the Kinect and 

its ROS node, explained in section 5.2.7). 

The Dobot ROS API description (providing C++ functions) is downloadable and 

explained in [47]. 
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5.2.3 Robot Perception Overview 

The robot perception is a key part to achieve ball catching task in our project. The 

robot needs to have the object's position information in real-time to estimate ball's 

landing point.  

 

The robot perception can be divided into two main components, object detection 

part and 3D coordinate transformation part respectively. The object detection part 

is used for detecting the object in real time while receiving images from Kinect 2 

sensor. The second part is used for obtaining object's real-world coordination 

from the detection information. 

 

5.2.4 Object detection - tracker 

In 2015, a tracker with Kernelized Correlation Filters (KCF) was proposed by João 

F. Henriques [48] which showed promising results in object tracking. Thus, the 

first object detection attempt in our project is using an object tracker as mentioned 

above. Following the documentation of opencv tracker [49], the KCF tracker was 

implemented in our project. However, due to the unstable light condition and 

relative high computation demand of this filter, the tracking result’s accuracy isn’t 

sufficient for our high-speed flying ball application.  

 

Figure 5.6 - OpenCV KCF tracker structure 
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5.2.5 Object detection – color detection in each frame 

In order to have a more accurate detection of object, another solution of using 

color detection in each frame was implemented. In the previous work of Neves in 

2015 [50], a framework of using RGB color and depth information to detect a 

flying ball has been raised. In our application, the object detection is also 

implemented by threshing the image’s color. The color thresholding operations 

are done in HSV colorspace which is a model to represent the colorspace similar 

to RGB model [51].  

The HSV stands for Hue, Staturation and Value in the colorspace, RGB stands 

for Red, Green and Green values in the colorspace as shown in Figure 5.7 and 

Figure 5.8.  

 

Figure 5.7 - HSV presentation 

 

Figure 5.8 - RGB presentation 
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The first ball detection framework is illustrated in Figure 5.9. The detection is done 

in each frame by using the HoughCircle detection [52] on the thresholded image. 

 

Figure 5.9 – First detection framework 

Theoretically, the HoughCircle detection can perfectly detect the ball in each 

frame as it is a circle in the image. However, due to the light condition, the 

threshed object image could be a semi-circle or even not a circle. Due to that 

factor, a second detection framework which switched the detection mechanism 

to blob detection was purposed and implemented. The blob detection is basically 

extracting a group of pixels which has similar color or other features like circularity 

and convexity [53]. The second detection framework is illustrated as Figure 5.10. 

 

Figure 5.10 - Second detection framework 

5.2.6 Depth acquisition and coordinates transformation 

Although the detection part gives the position of ball on the image, it still isn’t a 

real-world coordinate of the object. According to the description of Kinect 2 sensor 

working range and angles in Figure 4.2, two projections in x and y directions can 

be founded in Figure 5.11. The meanings of parameters are declared in Table 

5.3. 

Extract object 
HSV values' 

range

Thresh the 
background 
image with 
target's HSV 

range. 

Using circle 
detection to 
detect the 
ball on the 
Threshed 

binary image

Extract the 
ball's position 
from image

Extract object 
HSV values' 

range

Thresh the 
background 
image with 
target's HSV 

range. 

Using blob 
detection to 
detect the 
ball on the 
Threshed 

binary image

Extract the 
ball's position 
from image
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Figure 5.11 - Projections 

Table 5.3 - Projections parameters 

Parameter Physical meaning Values 

𝛼 Horizontal angle of vision 70 degrees 

𝛽 Vertical angle of vision 60 degrees 

𝑋𝑠 Object’s screen position 

in x direction 

 

𝑌𝑠 Object’s screen position 

in y direction 

 

𝑆𝑤 Screen width 1920 pixels 

𝑆𝑦 Screen height 1080 pixels 

𝐹𝑥𝑠 Focal length in width 

projection 

 

𝐹𝑦𝑠 Focal length in height 

projection 

 

𝑋𝑤 Object’s real-world 

position in x direction  

 

𝑌𝑤 Object’s real-world 

position in y direction 

 

𝑍𝑤 Object’s real-world 

position in z direction 
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The focal lengths can be obtained by using screen’s size and sensor’s angle of 

vision information as follows.  

1
2 ∗ 𝑆𝑤

𝐹𝑥𝑠
= tan

𝛼

2
  ,

1
2 ∗ 𝑆𝑦

𝐹𝑦𝑠
= tan

𝛽

2
  

𝐹𝑥𝑠 =  

1
2

∗ 𝑆𝑤

tan
𝛼
2

  

𝐹𝑦𝑠 =  

1
2 ∗ 𝑆𝑦

tan
𝛽
2

  

During the detection, the object’s screen position (𝑋𝑠, 𝑌𝑠) is obtained, the 

distance 𝑍𝑤 is also obtained by registration the depth information via 

librefreent2 driver [54]. Then, using similar triangles, the object’s real-world 

position can be deduced as follows. 

𝑋𝑤

𝑋𝑠
=

𝑍𝑤

𝐹𝑥𝑠
  ,

𝑌𝑤

𝑌𝑠
=

𝑍𝑤

𝐹𝑦𝑠
  

𝑋𝑤 = 𝑋𝑠 ∗
𝑍𝑤

𝐹𝑥𝑠
  , 𝑌𝑤 = 𝑌𝑠 ∗

𝑍𝑤

𝐹𝑦𝑠
  

The final representation of 𝑋𝑠 and 𝑌𝑠 can be obtained by replacing the deduced 

focal lengths, thus the expressions of object’s real-world position are as 

presented below, 

𝑋𝑤 = 𝑋𝑠 ∗
𝑍𝑤

1
2

∗ 𝑆𝑤

∗  tan
𝛼

2
 

𝑌𝑤 = 𝑌𝑠 ∗
𝑍𝑤

1

2
∗𝑆𝑦

∗ tan
𝛽

2
Figure 4.2 - Range of detection of Kinect V2 

𝑍𝑤Figure 4.2 - Range of detection of Kinect V2Figure 4.2 - Range of detection 

of Kinect V2 
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5.2.7 Ball trajectory estimation 

The ball trajectory estimation task has been performed using Kinect version 2 to 

retrieve 2 frames from a live video feed, then extract the initial position and initial 

velocity vector to feed 3D trajectory models. The 3D trajectory models can be 

obtained from 2D trajectory models by rotating the 2D plane around the axis 

perpendicular to the “ground” (for instance in Figure 5.12, the rotation axis could 

be the �⃗� axis). 

 

Two different approaches have been considered for the ball trajectory: 

• Ball motion without air resistance 

 

According to Newton’s 2nd law of motion, 

∑ �⃗� = 𝑚�⃗�𝐺 

 

�⃗� 

�⃗� 

0 

�⃗� 

𝑉0𝑥
ሬሬሬሬሬሬ⃗  

𝑉0𝑦
ሬሬሬሬሬሬ⃗  

𝑉0
ሬሬሬ⃗  

ℎ0 

𝜃0 

Figure 5.12 - 2D initial conditions for ball trajectory 
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The projection onto the axes 𝑥 and �⃗� gives, 

𝑚𝑎𝑥 = 0 
 

⇔  𝒂𝒙 = 𝟎

𝑚𝑎𝑦 = −𝑚𝑔 
 

⇔  𝒂𝒚 = −𝒈
 

Integrating the acceleration, 

𝒗𝒙 = 𝑎𝑥𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑣𝑥(𝑡 = 0) =  𝑣0𝑥 = 𝒗𝟎𝐜𝐨𝐬 (𝜽𝟎) 

𝒗𝒚 = 𝑎𝑦𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  −𝑔𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  −𝒈𝒕 + 𝒗𝟎 𝐬𝐢𝐧(𝜽𝟎)      [𝑢𝑠𝑖𝑛𝑔: 𝑣𝑦(𝑡 = 0) =  𝑣0𝑦 = 𝑣0sin(𝜃0)] 
 

Integrating the velocity, 

𝒙 = 𝑣𝑥𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =   𝒗𝟎 𝐜𝐨𝐬(𝛉𝟎) 𝒕     [𝑢𝑠𝑖𝑛𝑔: 𝑥(𝑡 = 0) =  0]

𝒚 = −
1

2
𝑔𝑡2 + 𝑣𝑦𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  −

𝟏

𝟐
𝒈𝒕𝟐 + 𝒗𝟎 𝐬𝐢𝐧(𝜽𝟎) 𝒕 + 𝒉𝟎    [𝑢𝑠𝑖𝑛𝑔: 𝑦(𝑡 = 0) =  ℎ0] 

 

The coordinates (𝒙, 𝒚) represent the ball position at time t in Figure 5.12. 

 

• Ball motion with air resistance 

In order to determine the representation of the air resistance, the Reynolds 

number 𝑅𝑒 must be calculated (cf. [55]). 

𝑅𝑒 =  
𝜌𝑙𝑣

𝜂
 

Where 𝜌  is the fluid density (in the study case, the air density), 𝑙  is the 

characteristic cross-sectional length (the length of the fluid flow, in the study case 

it is the diameter of the ball), 𝑣 is the velocity relative to the fluid (in the study case 

it can be approximated by the initial velocity of the ball 𝑣0), 𝜂 is the fluid viscosity 

(in the study case, the viscosity of the air). 

The representation of air resistance depends on 𝑅𝑒: 

• If 𝑅𝑒 << 1, the air resistance is supposed to be linear 

• If 𝑅𝑒 > 1000, the air resistance is supposed to be quadratic 

• In between, in depends on the case. 
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The force of air resistance (linear case) can be represented by, 

𝐹𝑟𝑒𝑠𝑖𝑠𝑡
ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ =  −𝑐�⃗� 

The coefficient 𝑐 is the air resistance coefficient, 

𝐹𝑟𝑒𝑠𝑖𝑠𝑡
ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ =  −𝑐�⃗� =  −

1

2
𝜌𝑐𝐷𝐴�⃗� 

Where 𝑐𝐷 is the drag coefficient [56] and can be calculated using Brown and 

Lawler formula for 𝑅𝑒 < 2 × 105 (considered to be always verified in the study 

case), 

𝑐𝐷 =  
24

𝑅𝑒
(1 + 0.15𝑅𝑒

0.681) + 
0.407

1 + 8710𝑅𝑒
−1 

𝐴 is the cross-sectional area facing the flow (in the study case it is the surface 

of the circle whose diameter is the same as the one of the ball), 𝜌 is the fluid 

density. 

From Newton’s second law of motion, adding the force of air resistance, 

𝑚𝑎𝑥 = −𝑐𝑣𝑥  
 

⇔  
𝒅𝒗𝒙

𝒅𝒕
=  −

𝒄

𝒎
𝒗𝒙

𝑚𝑎𝑦 = −𝑚𝑔 − 𝑐𝑣𝑦  
 

⇔  
𝒅𝒗𝒚

𝒅𝒕
=  −𝒈 −

𝒄

𝒎
𝒗𝒚

 

 

This system of differential equations can be solved using “odeint” [57] in python 

language for instance. 

 

The force of air resistance (quadratic case) can be represented by, 

𝐹𝑟𝑒𝑠𝑖𝑠𝑡
ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ =  −𝑐‖�⃗�‖�⃗� 

The equations can be solved as shown in [58], but the python approach using 

“odeint” is chosen because faster.  
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From Newton’s second law of motion, 

𝑚𝑎𝑥 = −𝑐 (√𝑣𝑥
2 + 𝑣𝑦

2) 𝑣𝑥  
 

⇔  
𝒅𝒗𝒙

𝒅𝒕
=  −

𝒄

𝒎
(√𝒗𝒙

𝟐 + 𝒗𝒚
𝟐) 𝒗𝒙

𝑚𝑎𝑦 = −𝑚𝑔 − 𝑐 (√𝑣𝑥
2 + 𝑣𝑦

2) 𝑣𝑦  
 

⇔  
𝒅𝒗𝒚

𝒅𝒕
=  −𝒈 −

𝒄

𝒎
(√𝒗𝒙

𝟐 + 𝒗𝒚
𝟐) 𝒗𝒚

 

 

Both approaches have been gathered into one realistic test, shown in Figure 5.13. 

The initial conditions for the simulation of the ball trajectory are the following, 

• 𝑑 = 4.0 ×  10−2 𝑚 (diameter of the “table tennis” ball) 

• 𝑣0 = 2.5 𝑚/𝑠 

• 𝜃0 = 1.2 𝑟𝑎𝑑 

• ℎ0 = 1.2 𝑚 

• 𝑔 = 9.81 𝑚/𝑠² 

According to the similar results for a throwing distance < 2m over multiple tests, 

the chosen approach has been the trajectory model without air resistance, in 

order to speed up the calculation and therefore the communication between the 

components. 

 

 

Figure 5.13 - simulation of ball trajectory 
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5.2.8 ROS communication 

• RQT graph 

• C++ / python node connexion 

ROS contains multiple components including Nodes, Master, Parameter server, 

Messages, Topics, Services and Bags [59]. A ROS computational graph is 

presented in Figure 5.14. Nodes are the basic function unit for ROS and support 

C++ and python languages. Master is a central process that enable different 

nodes can find each other in order to communicate, the communication is done 

by sending and receiving data to or from a topic. 

 

Figure 5.14 - ROS computational Graph Level 

In our application, the communication is realized by two types of nodes, they are 

publishing node and subscribing node specifically. The publishing nodes will 

publish data to object position and estimation position topics, then the subscribing 

nodes will subscribe to those topics and use those data to control the robot. Our 

ROS communication structure is presented in Figure 5.15. 
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Figure 5.15 - ROS communication structure 

For the robot control part, there are interactions of request and reply existing and 

those interactions can be implemented via ROS Service as DobotServer in Figure 

5.15.  
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5.2.9 Reinforcement learning perspective 

An ultrasonic sensor (Hc-Sr04 – presented in Figure 5.16) has been added to 

help the robot know when the ball successfully went through the net during 

reinforcement learning process. The sensor has been connected to a raspberry 

PI to integrate it to the ROS network created. 

The connection process is explained in [40]. 

The sensor can be easily screwed under the net as shown in Figure 5.17 (to avoid 

detection if the ball bounces on the ring of the net). 

According to the tests performed using signal analysis, the range of the sensor 

is: 2.5cm to 380cm. Thus, the hole on the net has been offset from the Dobot 

attachment point to ensure that the ball will not fall in the “dead zone” of the 

sensor. 

Figure 5.16 - Hc-Sr04 sensor 

and Ultrasonic sensor 

connected to Rapsberry pi 
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The Raspberry Pi and HC-SR04 sonar sensor are operational for reinforcement 

learning applications using the physical ITNB. However, the net shown in Figure 

5.17 has not been produced yet (a replacement has been in use for experimental 

purposes, as shown in Figure 5.1). 

 

 

 

  

Figure 5.17 - ITNB net and ultrasonic sensor 
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5.3 Virtual ITNB 

5.3.1 Mechanical model in Gazebo 

The CAD model of the Dobot Magician has been supplied by the Dobot customer 

support. The net, described in Figure 5.4, has been added to the robot arm using 

Catia V5. The assembly is shown in Figure 5.18. 

 

However, the CAD materials and the inertial matrices have not been provided by 

the Dobot customer support. The materials (described in section 5.2.1) have been 

created using Catia V5 and the inertial matrices have been calculated using 

MeshLab [60] and Blender [61]. 

The results from MeshLab were obtained considering homogeneous mass 

repartition and were cross-checked with the results from Catia V5 (where 

materials were applied).  

Blender has been used to create a URDF description [62] of the ITNB. This 

description is supposed to be universal but can only be applied to open-

kinematics chains. The ITNB has been considered as an open-kinematics chain 

even if the Dobot is composed of a closed-kinematics chain (using links to 

Figure 5.18 - Dobot Magician and net assembled 
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maintain the end-effector parallel to the “ground”). The robot can then be 

spawned in Gazebo [62] using the URDF description. 

 

5.3.2 Joint control in with Rviz and Gazebo-ros control 

Once the robot has been spawned in the Gazebo environment, the joints are not 

controlled by default.  

A simple solution is to add a gazebo-ros controller [63]. This controller can take 

the form of a PID controller. It is manageable for robots with a few DOFs. For 

instance, a sliding net can be controller using a PID controller tuned with rqt 

(software framework of ROS that implements the various GUI tools in the form of 

plugins [64]). The sliding net along 𝑥  axis, shown in Figure 5.19, has been 

implemented to run the first reinforcement learning tests. The sliding net along 𝑥 

axis has been implemented to run the first reinforcement learning tests (1D 

movement of the net and 2D movement of the ball). 

The simple control concept in Gazebo can be extended to open-kinematics 

manipulators using Rviz [65] and Moveit! [66], a motion planning framework for 

ROS. The control of closed-kinematics manipulators is not yet handled by those 

Figure 5.19 - Sliding net in Gazebo 
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frameworks. Consequently, the ITNB has been modelled with 4 joints (last joint 

for the end-effector supposed to be maintained parallel to the “ground”). The 

result of the joint control is shown in Figure 5.20. The red cube represents the 

centre of the net and is moved to a desired target position (determined by the ball 

trajectory estimation). 

Rviz and Gazebo can exchange data through ROS nodes: Gazebo tells Rviz the 

target position of the end-effector, and Rviz sends back the joint angles to reach 

the desired target. 

 

5.3.3 Ball motion in Gazebo 

Two approaches have been considered to describe the ball motion in Gazebo: 

• Model creation and C++ programming using ROS nodes 

This approach is complex because it involves the creation of multiple ROS nodes 

interfaced with Gazebo to describe the behaviour of the ball and to spawn new 

models of the ball once a ball has been thrown. 

It is however a comprehensive way of coding the ball motion since it includes 

collisions and uses the physics engine within Gazebo. 

Figure 5.20 - Rviz model of virtual ITNB 
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• Animation definition using Gazebo node 

On the other hand, a very simple method to describe the movement of a ball is 

by using the animation tool [67] provided by Gazebo (using a Gazebo node). 

The main drawback is that the physics engine is not solicited by the animation, 

which means that the ball will not bounce. Still, the ball can be seen by a ROS-

kinect plugin, which makes this approach interesting. 

The ball motion (animation) is shown in Figure 5.19, along with the sliding net. 

 

5.3.4 Reinforcement Learning in 2D environment and Gazebo 

A 2D prototype environment was made to simulate a ball catching robot as shown 

in Figure 5.21. This environment is created by using pygame [68] which is an 

open Source python programming language library for making multimedia 

applications like games in 2D. 

 

Figure 5.21 - 2D pygame environment 

In the 2D environment, a red ball will drop from the left side with a random velocity, 

its target position is in the range of semi-circle. The agent (robot) can only move 
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inside the semi-circle range. The agent’s task is trying to catch the ball before it 

landed inside the moving range 

The implemented algorithm is based on ACKTR  which is proposed by Yuhuai 

Wu in 2017 [69]. This algorithm is an improvement of actor-critic [70] whose 

structure is presented in Figure 5.22. One improvement is adding multiple 

workers which can be understood as sub-environments instead of just having one 

environment, that permits agents can explore the same environments 

asynchronously which can be seen in Figure 5.23. 

 

Figure 5.22 - Actor-Critic structure 
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Figure 5.23 - Asynchronous Actor Critic 

A gym-gazebo toolkit has been used for the gazebo environment and enables 

the use of gym which is an Openai reinforcement learning toolkit. 
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6 Validation 

6.1 Physical ITNB 

6.1.1 Robot control results 

In order to validate the behaviours of real robot control, a 10 points data set are 

tested repeatedly to exam the repeatability of dobot, the tested data can be found 

in the GitLab repository/Blackboard repository. To visualize those testing data, 

the target points and reached points are plotted and presented in Figure 6.1, 

according to the confidence interval, a 95% confident error interval of 5.1787 ±

1.3081 𝑚𝑚 is deduced by using similar approach of positioning error analysis of 

Chen.J’s work in 1986 [71]. 

 

Figure 6.1 - Joint control repeatability 

Although small errors can be found from the visualization and error interval 

results, the Dobot claims that the error could be limited in 0.2mm [72], which is 

much smaller than our result. There are several potential reasons causing that 

result, such as the links are rigid bodies, the servo motor angular position is 

influenced by speed (high speed overshoots angle), the precision of tools (we 

used the type measurement whose precision is 1mm) and the alignment of the 

pen and pen holding for drawing the points. Thus, a more precise measurement 
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such as laser measurement can be considered as an improvement method in the 

future, angle measurement could also be tested. 

6.1.2 Object detection results  

As explained in section 5, two detection methods which are static condition (static 

ball) and dynamic condition (flying ball) are implemented in our application. The 

circle detection and blob detection methods are tested in static and dynamic 

condition separately to exam their performance. Their performances are valued 

by frame per second (fps), success rate and error interval. 

In both static and dynamic conditions, the blob detection method outperformed 

circle detection method in processed frames per second as shown in Figure 6.2 

and Figure 6.3. 

 

 

Figure 6.2 - Static mean fps comparison 
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Figure 6.3 - Dynamic mean fps comparison 

In dynamic condition, the success rates of detection in two methods are also 

compared, although the blob detection method didn’t give a satisfying success 

rate, it is still better than the circle detection method as presented in Table 6.1. 

 

Table 6.1 - Detection comparison confidence interval 

Detection 

comparision 

Mean 

norm 

error 

Standard 

Deviation 

Z(0.95) Confidence 

interval 

blob detection 48.0359 24.65659 1.96 15.28231 

circle detection 56.61657 20.89561 1.96 12.95124 

 

The blob detection tends to have a smaller error compared with the circle 

detection method as shown in Table 6.1. 

We couldn’t compare the results with Neves’ work [50] because they do not 

provide frame rate, or accuracy. They just highlight that their approach works. 
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It can be noticed that they use a different vision library (still with Kinect): UAVision 

computer library. 

 

Nevertheless, we can compare the results with the performance of Rollin’ Justin 

[25] bragging a precision of 2cm in space (our results indicate an average 

positioning error of 5mm), 5ms in time (our robot takes approximately 1.5 seconds 

to reach the target after the ball has been dropped/thrown, which is still too slow 

to be able to catch it), 80% catch rate (our results tend to a 15% catch over 100 

ball drops, excluding ball thrown). It can be noticed that there is a significant 

difference in the material used: custom stereo vision system with high resolution 

(1600×1200@25Hz) cameras for instance. 

Future works, like using of UKF to smooth the trajectory (Kalman filter 

implementation), and machine learning to improve accuracy (learning as filter for 

Kinect) can be used in a future implementation of the in-to-net bot. 
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6.2 Virtual ITNB 

6.2.1 Net movement (1D control) and ball motion 

In order to validate the behaviour of the virtual ITNB, as explained in section 5.2.2, 

a sliding net (1D movement) has been designed to simplify the Reinforcement 

Learning implementation. 

The net can follow a random trajectory of the ball seen from a camera POV. 

6.2.2 Simple reinforcement learning implementation 

The Reinforcement Learning was to be implemented using gym-gazebo software 

[73] based on OpenAI, but the interface turned out to be very complex for custom 

robot models and robot environments. 

The prototype learning agent in 2D environment (pygame) has therefore been 

written to validate whether a robot can learn the ball dynamics. It shows a trend 

that the agent can follow the ball’s moving direction and try to catch it. Although 

in our training, the robot cannot succeed every time but an increasing catching 

rate needs to be pinpointed. 

For the reinforcement learning, in each step, the agent’s observation states are 

robot’s current position and ball’s current position. The agent’s actions are set as 

velocities at current step. 

 

6.2.3 Reinforcement Learning perspective for Gazebo 

The python script for Reinforcement Learning showed great progress in the robot 

learning of the ball dynamics. The team infers that a simple learning approach 

can be implemented for the sliding net and a random trajectory of the ball, shown 

in Figure 5.19. If the learning is successful, it can then be extended to the 

complete virtual ITNB, shown in Figure 5.2. 
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Several aspects of the reinforcement learning implementation can be improved, 

such as: 

• Learning parameters to tune (add velocity and other parameters) 

• Setup gazebo environment with gym (3D) or ROS nodes (2D) 

• Transfer policy from virtual to real robot 
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7 Conclusion 

Inspired from recent research in the field of ball catching robots, a successful ball 

catching robot has been created, using a Kinect version 2, a Dobot Magician, a 

custom net designed with Catia V5, and ROS the open-source, meta-operating 

system, to connect all components (software and hardware). 

Even if the performance does not equal the 80% successful catching rate of 

Rollin' Justin [25], the physical in-to-net bot showed satisfactory results for balls 

dropped from human height. However, it needs enhancements for balls thrown 

at it. 

In order to improve the results of the physical experiment (ball thrown at the 

robot), a virtual environment in Gazebo has been created to implement 

reinforcement learning. A simple one-dimension model of the in-to-net bot has 

been created (sliding net) which is able to follow the random trajectory of a virtual 

ball, has been developed. Another model for the complete in-to-net bot has been 

created in the Gazebo environment, however, the pure reinforcement learning 

has only been theorised and not implemented, neither on the sliding net, nor on 

the virtual in-to-net bot. Nevertheless, a simple pygame environment has helped 

confirmed that a robot agent can learn ball dynamics based on the position of the 

ball received at specific instants. It may also be enhanced by providing the 

velocity of the ball to the agent/robot. 

Overall, the majority of the objectives have been fulfilled.  

Firstly, the ball motion has been converted to a simple entity relative to the robot 

(a three-dimensional point in the robot workspace in the case of the physical in-

to-net bot; a three-dimensional point in the Gazebo environment in the case of 

the virtual in-to-net bot). Progress can still be made for the physical model, such 

as increasing the frame rate captured by the Kinect version 2 and speeding up 

the communication through ROS. 

Secondly, the ball motion has been effectively modelled and a simple information 

(landing point estimation) has been communicated to the robot arm, controlled 

and able to reach the target. For the physical model, the ROS Service provided 



 

56 

by Dobot company has been used to control the robot. For the virtual model, the 

Gazebo-ROS control has been used to control the virtual sliding net and the 

virtual in-to-net bot, which also required the use of Rviz/Moveit!. 

Thirdly, according to the literature review, reinforcement learning increases the 

catching rate of the robot. Even though the reinforcement learning method has 

only been tested in a pygame environment, the Gazebo environment is ready to 

be tested with simple learning processes, as well as more complex ones. The 

impact of reinforcement learning on the catching rate will therefore be confirmed 

with future implementation. The physical in-to-net bot is also ready to be tested 

with simple learning processes, thanks to the consideration of the net and the 

ultrasonic sensor connected to a Raspberry Pi.  

Finally, even though the control of the virtual robot has been confirmed by a 

Gazebo simulation, the machine learning policies have not been implemented. 

As a consequence, the transfer of learning policies from the virtual environment 

to the physical environment has not been tested. This step is crucial to validate 

the impact of reinforcement learning on the catching rate of the physical robot, 

and it can be carried out in future research after a successful implementation of 

the reinforcement learning in the simulated environment. 
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APPENDICES 

Appendix A – Inverse kinematics of Dobot Magician 

 

The indications given to the robot to reach a specific position T with a specific 

orientation Q are, 

• T = [𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡] (the target point) 

• 𝜓 (angle between 𝑥1 and link {5}) to define the orientation Q 

 

From Figure A.1, 𝜃1 can be derived, 

𝜃1 = 𝐴𝑡𝑎𝑛2(𝑦𝑡 , 𝑥𝑡) 
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Another relation can be derived from Figure A.1, 

𝑟𝑡 =  √(𝑥𝑡)2 + (𝑦𝑡)2 

The relationship between the orientation angle and the joint angles is, 

𝜓 =  𝜃2 + 𝜃3 + 𝜃4 

The coordinates of the wrist joint (03) can be determined, 

𝑟4 = 𝑟𝑡 − 𝑎4 cos(𝜓) 

𝑧4 = 𝑧𝑡 − 𝑎4 sin(𝜓) 

The angles in the triangle 010203 can then be found, 

𝛼 = 𝐴𝑡𝑎𝑛2(𝑧4 − 𝑑1, 𝑟4) 

The distance 0103 is, 

𝑠 = √(𝑧4 − 𝑑1)2 + (𝑟4)2  

Using the law of cosines in 010203, 

𝛽 =
𝑠2 + 𝑎2

2 − 𝑎3
2

2 ∗ 𝑎2 ∗ 𝑠
;  sin(𝛽) =  ±√1 −  cos(𝛽)2 ;    𝛽 = 𝐴𝑡𝑎𝑛2(sin(𝛽) , cos(𝛽)) 

𝜃2 can then be determined, 

 

00 𝑥0 

𝑦0 

𝐸 

𝑥𝑡 

𝑦𝑡  

𝑟𝑡 

𝜃1 

Figure A.1 - Dobot top view 
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𝜃2 = 𝛼 ±  𝛽 

In order to determine 𝜃3, the following expressions are used, 

𝑟4 = 𝑟𝑡 − 𝑎4 cos(𝜓) =  𝑎2 cos(𝜃2) + 𝑎3 cos(𝜃2 + 𝜃3)  

𝑧4 = 𝑧𝑡 − 𝑎4 sin(𝜓) =  𝑎2 sin(𝜃2) + 𝑎3 sin(𝜃2 + 𝜃3) + 𝑑1 

𝑠 = √(𝑧4 − 𝑑1)2 + (𝑟4)2  

𝜃3 can be derived, 

cos(𝜃3) =  
𝑠2 − 𝑎2

2 − 𝑎3
2

2 ∗ 𝑎2 ∗ 𝑎3
;    sin(𝜃3) =  ±√1 −  cos(𝜃3)2 ;    𝜃3 = 𝐴𝑡𝑎𝑛2(sin(𝜃3) , cos(𝜃3)) 

According to Figure A.2, 

𝜃3 = ± 𝐴𝑡𝑎𝑛2(sin(𝜃3) , cos(𝜃3)) 

Finally, 

𝜃4 =  𝜓 − 𝜃2 −  𝜃3  
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Figure A.2 - Dobot side view 
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The solutions of the inverse kinematics are gathered in Table A.1. 

Table A.1 - Solutions of the inverse kinematics (Dobot) 

First solution Second solution 

𝜃1 

𝜃2 =  𝛼 − 𝛽 

𝜃3 

𝜃4 =  𝜓 − 𝜃2 − 𝜃3 

𝜃1_𝑏𝑖𝑠 

𝜃2_𝑏𝑖𝑠 =  𝛼 + 𝛽 

𝜃3_𝑏𝑖𝑠 = − 𝜃3 

𝜃4_𝑏𝑖𝑠 =  𝜓 − 𝜃2𝑏𝑖𝑠
− 𝜃3_𝑏𝑖𝑠 

 

According to the tests performed on the Dobot Magician, the angle 𝜓 remains 

constant ( 𝜓  = 0), always parallel to the ground (it is not controlled, it is 

mechanically maintained to this position).  
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Appendix B – Risk assessment 
 

The risk assessment for the project is shown in Table B.1. 

The risk rating is based on the following: 

• 1 = Negligible 

• 2 = Minor 

• 3 = Medium 

• 4 = Major 

• 5 = Severe 

 

Table B.1 - Risk assessment 

Task / event Significant Hazards 
Who is 

affected 
Existing controls Risk rating 

Additional 

control 

needed? 

 
 

Human 

/ Robot 
None / describe Consequence Likelihood 

Total = 

C x L 
Risk mitigation 

        

Robot testing Break robot 

components 

R No spare 

components, 

simulation 

3 1 3 Get new 

components 

(fast) 

 Injury the human R Safety covers, 

health and 

safety rules 

1 1 1 N/A 

 Brightness 

(blinding sensors) 

R /P Light controlled 

testing room 

1 1 1 N/A 

Software 

implementati

on 

Compatibility 

issues (platforms, 

compilation, 

language, 

updates) 

R Thorough 

literature review  

2 2 4 N/A 
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 Poor 

documentation 

(programs) 

P  2 1 2 N/A 

 Sensor failure 

(outrange, 

outbounds, noise) 

R Robust 

algorithm 

1 3 3 N/A 

 Output 

malfunction (arm 

moving not as 

expected) 

H / R Boundary 

conditions 

2 2 4 N/A 

 Processing unit 

overflow (ML 

related, memory) 

R Preliminary 

memory 

estimation 

2 2 4 N/A 

Hardware 

Implementati

on 

Electromechanica

l failure / damage 

(wires, 

components, 

overheating), 

R Regular 

maintenance 

3 1 3 N/A 

 Loose wire R cable ties 2 1 2 N/A 

 Overheating 

components 

R Regular 

maintenance, 

cooling fan. 

2 1 2 N/A 

 Missing parts R Spares 1 2 2 N/A 

 Faulty parts R Return policy 2 1 2 Buy a new 

one 

 

 

 

Mechanical 

interface failure 

R Preliminary 

design and 

maintenance 

2 1 2 Redesign 

Inventory 

stock 

supervision 

Unavailable 

components / 

technology 

P Find alternatives 1 1 1 N/A 

 Lack of resources P  1 1 1 N/A 
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Budgeting Lack of funds to 

get components/ 

software 

P Find cheap 

alternatives 

2 1 2 N/A 

 Unexpected rise 

in cost 

P  2 1 2 N/A 

Scheduling  Go beyond 

deadline 

P Respect Gantt 2 1 2 N/A 

 Low efficiency of 

resource 

allocation and 

organisation  

P Motivate team 

members 

3 1 3 N/A 

 Unrealistic 

project plan 

schedule 

P Update Gantt 2 1 2 N/A 

 Delayed meetings P Inform about 

delays 

1 1 1 N/A 

Organization 

Management 

Unexpected 

absence / Long 

absence 

P Supervisors 

advice 

1 1 1 N/A 

 Poor/lack/ error 

of 

Communication 

(supervisors 

and/or students) 

P Supervisors 

advice 

1 1 1 N/A 
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Appendix C – Time management 

C.1 Overview of the main tasks 

C.2 Literature review 

  

Figure C.1 - Overview Gantt 

Figure C.2 - Literature review Gantt 
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C.3 Specification requirements 

C.4 Implementation strategy 

 

Figure C.3 - Specification requirements Gantt 

Figure C.4 - Implementation strategy Gantt 
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C.5 Implementation and coding 

C.6 Testing verification validation 

 

Figure C.5 - Implementation and coding Gantt 

Figure C.6 - Testing verification validation Gantt 
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C.7 Deployment and documentation 

 

 

Figure C.7 - Deployment and documentation Gantt 
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