

CRANFIELD UNIVERSITY

Achille MARTIN

Yang YOU

Chirantan SAHASRABUDHE

In-to-net Bot (ITNB)

Ball catching robot based on Control approach and enhanced

with Reinforcement Learning methods

SATM

Robotics

Group Thesis

Academic Year: 2018 - 2019

Supervisors: Dr. Gilbert Tang

Associate Supervisor: Dr. Antonios Antoniadis

May 2019

CRANFIELD UNIVERSITY

SATM

Robotics

Group Thesis

Academic Year 2018 - 2019

Achille MARTIN

Yang YOU

Chirantan SAHASRABUDHE

In-to-net Bot (ITNB)

Ball catching robot based on Control approach and enhanced

with Reinforcement Learning methods

Supervisor: Dr. Gilbert Tang

Associate Supervisor: Dr. Antonios Antoniadis

May 2019

© Cranfield University 2019. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

This group thesis aims to explore the “In-to-Net Bot” system designed to explore

“catching a ball” with a robot. It aims to contribute to solving logistics and low

mobility tasks. The integration of the Dobot Magician (manipulator robot), the

Microsoft Kinect, OpenCV software library, and ROS interfaces, are thoroughly

explained for the implementation of a physical model. The integration of the

Gazebo simulation environment, Rviz and Moveit! frameworks, and ROS nodes

are also detailed for the implementation of a virtual model enhanced with

reinforcement learning. The main coding languages are C++ and python.

A successful physical catching robot has been designed to catch dropped balls.

A satisfactory positioning error of 5.1787±1.3081 mm (95% confidence interval)

with the manipulator has been reached. The average frame rate per second on

obtained didn’t meet the expectations on the other hand, as it reached only 7 to

10 frames per second (instead of 50 fps announced by Microsoft for Kinect

version 2). Moreover, the movement of the robot arm is slightly slower than the

ball motion after it has been thrown and takes up to 1.5 seconds in average.

Consequently, the catch rate over 100 ball drops has been evaluated at 15%.

Keywords:

Robotics – Control theory – Reinforcement learning – Robot Vision

ii

ACKNOWLEDGEMENTS

We would like to express our very great appreciation to Dr. Tang and Dr.

Antoniadis for their valuable and constructive suggestions throughout the project.

Our special thanks are extended to the members of the Robotics Laboratory, who

provided necessary equipment and helped us setup the experiments.

iii

TABLE OF CONTENTS

ABSTRACT ..i

ACKNOWLEDGEMENTS .. ii

LIST OF FIGURES ...v

LIST OF TABLES ... vii

LIST OF ABBREVIATIONS ... viii

1 Introduction ... 1

1.1 Concept of ball catching .. 1

1.2 Scope and objectives .. 4

2 Literature review ... 6

2.1 Historical .. 6

2.2 Renowned research .. 7

3 Project management .. 11

3.1 Project initialisation .. 11

3.2 Task allocation ... 11

3.3 Time management ... 12

4 System specifications ... 14

4.1 Performance .. 14

4.2 External Interfaces ... 14

4.3 Hardware System .. 14

4.3.1 Dobot Magician ... 14

4.3.2 Microsoft Kinect .. 15

4.3.3 Raspberry Pi ... 16

4.4 Functions.. 17

4.5 Architecture .. 18

4.6 Implementation strategy .. 20

5 Implementation and testing .. 23

5.1 Overview of the system ... 23

5.2 Physical ITNB .. 25

5.2.1 Mechanical structure ... 25

5.2.2 Joint control ... 27

5.2.3 Robot Perception Overview .. 30

5.2.4 Object detection - tracker.. 30

5.2.5 Object detection – color detection in each frame............................... 31

5.2.6 Depth acquisition and coordinates transformation............................. 32

5.2.7 Ball trajectory estimation... 35

5.2.8 ROS communication ... 39

5.2.9 Reinforcement learning perspective ... 41

5.3 Virtual ITNB .. 43

5.3.1 Mechanical model in Gazebo ... 43

5.3.2 Joint control in with Rviz and Gazebo-ros control.............................. 44

iv

5.3.3 Ball motion in Gazebo ... 45

5.3.4 Reinforcement Learning in 2D environment and Gazebo 46

6 Validation .. 49

6.1 Physical ITNB .. 49

6.1.1 Robot control results ... 49

6.1.2 Object detection results .. 50

6.2 Virtual ITNB .. 53

6.2.1 Net movement (1D control) and ball motion 53

6.2.2 Simple reinforcement learning implementation 53

6.2.3 Reinforcement Learning perspective for Gazebo 53

7 Conclusion .. 55

REFERENCES .. 57

APPENDICES .. 64

v

LIST OF FIGURES

Figure 1.1 - Linear optical trajectory from Chapman .. 3

Figure 4.1 - Dobot Magician dimensions and joint limits 15

Figure 4.2 - Range of detection of Kinect V2.. 16

Figure 4.3 - A basic structure of a Raspberry Pi 3 Model B V1.2 16

Figure 4.4 - Product main function basis .. 18

Figure 4.5 - Software architecture ... 19

Figure 4.6 – Detail functions architecture ... 19

Figure 4.7 – Product perspective and interfaces .. 20

Figure 5.1 - Physical ITNB overview ... 23

Figure 5.2 - Virtual ITNB overview .. 24

Figure 5.3 - DOBOT joint angles ... 25

Figure 5.4 - ITNB Net CAD design.. 26

Figure 5.5 - Dobot forward kinematics model (DH parameters) 27

Figure 5.6 - OpenCV KCF tracker structure ... 30

Figure 5.7 - HSV presentation... 31

Figure 5.8 - RGB presentation .. 31

Figure 5.9 – First detection framework ... 32

Figure 5.10 - Second detection framework ... 32

Figure 5.11 - Projections ... 33

Figure 5.12 - 2D initial conditions for ball trajectory ... 35

Figure 5.13 - simulation of ball trajectory .. 38

Figure 5.14 - ROS computational Graph Level .. 39

Figure 5.15 - ROS communication structure .. 40

Figure 5.16 - Hc-Sr04 sensor and Ultrasonic sensor connected to Rapsberry pi
 .. 41

Figure 5.17 - ITNB net and ultrasonic sensor ... 42

Figure 5.18 - Dobot Magician and net assembled.. 43

Figure 5.19 - Sliding net in Gazebo .. 44

https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395534
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395535
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395536
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395541
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395542
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395543
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395544
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395545
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395546
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395553
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395554
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395557
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395557
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395558
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395559
https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395560

vi

Figure 5.20 - Rviz model of virtual ITNB ... 45

Figure 5.21 - 2D pygame environment ... 46

Figure 5.22 - Actor-Critic structure .. 47

Figure 5.23 - Asynchronous Actor Critic ... 48

Figure 6.1 - Joint control repeatability ... 49

Figure 6.2 - Static mean fps comparison .. 50

Figure 6.3 - Dynamic mean fps comparison ... 51

https://d.docs.live.net/8097206b4899cb11/GDP_Robotics_MSc/GDP%20report/GDP-Robotics-Thesis-YUME-MOCHI.docx#_Toc8395561

vii

LIST OF TABLES

Table 1.1 - Comparison heuristics and optimisation approaches 2

Table 3.1 - Comparison main task expected duration and real duration 13

Table 4.1 - Interfaces description .. 21

Table 5.1 - DH parameters for Dobot Magician .. 28

Table 5.2 - DH parameter values .. 28

Table 5.3 - Projections parameters ... 33

Table 6.1 - Detection comparison confidence interval 51

viii

LIST OF ABBREVIATIONS

IT Information Technology

ITNB In-to-net Bot

1

1 Introduction

People with less mobility are required to throw things for them to reach a place.

A system that helps with this can be very useful. A robot that can be useful within

a workshop to collect nuts and bolts or throw rubbish away as the worker stays

in place. On a larger scale this could help with for fruits on high trees which may

be dangerous when falling to the ground or are required not to be damaged e.g.

Coconuts are thrown, felled or naturally fall from high heights, where there is

always a risk of a free-falling coconut hitting an animal or person.

The main objective was: To demonstrate a concept by designing a system for

the Dobot Magician to “catch” a ball. The team consisted of 3 novice MSc

Robotics students with only approx. 75 days to come up with a solution.

1.1 Concept of ball catching

The concept of ball catching has been a topic for both robotics and neuroscience

in regards with a human or animal being able to catch an object. Even the ability

to “catch” or grip on to a static object such as a ledge or tree branches is included

in such research. Research in to the learning that occurs by failing first, such as

a baby learning to walk or to eventually, when it becomes a heuristic of the

human, where they don’t have to put effort or thought in to walking.

The most recent paper (Doctoral Thesis – 2017) addressing the machine learning

problem associated with the ball catching task is [1]. The team developed the

abstract aspect of machine learning and the concrete one to help engineers

design more effective solutions to Reinforcement Learning (RL) problems. The

“spectrum of decomposability” is introduced to “characterise problems and

solutions in decision making”. It consists in dividing a problem into several easier

subproblems to solve it.

Concerning the ball catching problem, they compare the heuristics approach to

the optimisation-based approach, as shown in Table 1.1. The result is that the

best approach heavily depends on the assumptions made.

2

Table 1.1 - Comparison heuristics and optimisation approaches

Method Heuristics Optimisation based

Type Specialist Generalist

Definition

“Humans employ heuristics to

reactively choose appropriate

actions based on immediate

visual feedback” [2]

Practical method, not optimal

“Predict the ball trajectory to

plan future actions” [2]

Input

representation

Angular representation of the

ball position (easily extracted

from a camera sensor) with

respect to the agent

Cartesian representation

Setup Model-free approach Model-based approach

Advocates Chapman [3] Belousov [2]

Strategy

Linear optical trajectory

(LOT)

Based on the rise of the

tangent angle 𝜃 between

ground plane and the ball at

constant rate. An illustration

is provided in Figure 1.1.

Linear quadratic Gaussian

control (LQG) or Model

Predictive control (MPC)

Predict the impact point of the

ball using the ball dynamics

Advantage
Performs well with systematic

perturbations (air resistance)

Adapts well to Gaussian

noise (Bayesian filtering)

Drawback
Harder to transfer to artificial

systems

Generally applied in closed-

room environments (not

baseball stadiums)

3

The ball catching task is defined as follows: “build a robot that runs such that it

intercepts a baseball flying high up in the air before it hits the ground”. They start

by setting up the RL problem and addressing common issues in RL such as the

“representation learning”, “curse of dimensionality”, “temporal credit assignment”,

exploration vs. exploitation dilemma”.

Figure 1.1 - Linear optical trajectory from Chapman

4

1.2 Scope and objectives

The model proposed to study the catching problem contains:

• Dynamics of the ball

• 2D movement of the agent

• Task (minimisation problem)

• Angular representation and cartesian representation

Note that the problem set up is slightly more complicated in the paper mentioned

previously [1], since the robot is running backwards and may have to run forward

without seeing the ball. In our robot catcher problem, an assumption can be

made, stating that the robot stands still and can see the ball at any time.

The first objective of the study is to effectively convert ball motion into a simple

entity relative to the robot/viewer. According to Table 1.1, on the one hand,

Chapman proposes an angular representation based on the rise of the tangent

angle 𝜃 between ground plane and the ball. On the other hand, Belousov

advocates a cartesian representation and a prediction of the landing point of the

ball using the dynamics and optimisation theory. This representation is easily

applied to robots thanks to control theory and recent robotics advances. On the

contrary, Chapman’s representation is better suited to humans. Therefore, the

control theory approach and the cartesian representation have been considered

to tackle the issue of representing the ball from the robot point of vue.

The second objective resulting from the representation consideration is to use the

ball landing point estimation to move the robot end-effector to this point. It

concerns the control of the robot in conjunction with ball motion representation.

The third dimension of the study is to extend the control perspective of the robot.

The RL problem stated in [1] is addressed in a 2D space (lower-dimensional

camera). The camera model, the controller and the biases for learning (Linear P-

control policy, policy search using CMA-ES for instance) are introduced. Results

of the RL experiment show that “it is possible to learn a successful ball catching

policy directly on observations, using generic reinforcement learning” [1].

5

Moreover, the policies learned are like the angular controllers (Heuristic method).

However, since the result depends on the choice of the approach (model-free or

model-based), a hybrid approach is possible.

Since the machine learning seems to be successfully applied to ball catching, the

third objective of the study is then to consider reinforcement learning to improve

the control of the robot to increase the catching rate. It is also to confirm whether

reinforcement learning can play a significant role in ball catching for future

research.

6

2 Literature review

2.1 Historical

To begin with, early research in robotics control, computer vision, artificial

intelligence, machine learning, and mathematical techniques have been

investigated. We saw that all these early research projects form the basis of the

current research of today which they have gone on to build on top of.

As we wished to investigate machine learning methods such as reinforcement

learning we looked in to the Q learning algorithm. In 1989, Watkins proposed Q

learning algorithm in his PhD thesis [4] which is one of the most important

algorithms in reinforcement learning for discretized setting.

In 1994 Peter Corke in his PhD [5] demonstrated the ability to track an object or

ball using a manipulator and camera system.

A study conducted in 1994 by Das [6] on fly ball catching showed the use of

machine learning / RL to solve the problem. They investigate whether the result

from experimental psychology (i.e. Chapman) is enough for an agent to learn the

task. A single camera is also used in a mousetrap catching system in Buttazzo

et al. [7]. This is similarly tested for a manipulator testbed for catching objects by

Fernandez et al.[8].

Back in 1995, the famous 4DOF “WAM” arm [9] at the MIT was created and was

able to catch a ball using active vision system. The object was located and

tracked, then the camera and the manipulator were calibrated (common

coordinated frame), then the path was generated by determining the catch point

and finally the arm would move to the designated point in time.

In 1997 the robot “Saika” developed by Nishiwaki [10] was able to localise a falling

ball using 2 DDC cameras, predict the ball path and position its hand/basket at

the catching point using inverse kinematics neural network method (three layered

neural network with sigmoid function used).

7

2.2 Renowned research

As we forayed further in to current methods we saw that there are several

simulation environments available for our research area. These include

environments such as Gym, Mujoco, Gazebo, Bullet, Roboshool etc.

In the hope of going further with the machine learning approach, a simple “game

of catch” [11] has been created by the Google DeepMind team to learn a control

policy in a dynamic visual environment. The game is simple and involves only two

objects: “a single pixel that represents a ball falling from the top of the screen

while bouncing off the sides of the screen and a two-pixel paddle positioned at

the bottom of the screen which the agent controls with the aim of catching the

ball. When the falling pixel reaches the bottom of the screen the agent either gets

a reward of 1 if the paddle overlaps with the ball and a reward of 0 otherwise”.

The result shows that, after 20 million frames of training, the agent can catch the

“falling ball” roughly 85% of the time. The recurrent attention model was tested,

and “since the agent was not in any way told to track the ball and was only

rewarded for catching it, this result demonstrates the ability of the model to learn

effective task-specific attention policies”.

The topic of the paper [11] might also be of interest, as the team proposes “a

novel recurrent neural network model that is capable of extracting information

from an image or video by adaptively selecting a sequence of regions or locations

and only processing the selected regions at high resolution”. This can be a

“cheaper” version of a machine vision algorithm using machine learning.

In Lippiello et al. It was discussed that both in a 2D and 3D system a high frame

rate is very ideal for accuracy [12]. However, it also discusses that if high frame

rate cannot be achieved then rather than a two-camera vision system a one

camera vision system would reduce computational cost and with improvements

and effort put into the prediction algorithm would function well. This was also

mentioned in Buttazzo et al. [7]. This is similarly tested for a manipulator testbed

for catching objects by Fernandez et al. [8].

8

Following on, Ribnick et al. discussed the localization of projectiles on its

apparent motion in a stationary monocular view in 3D. It analyses sequential

images and makes use of at minimum 3 images sticking to the least-squares

algorithm [13]. Such a system is also used in Cigliano et al. where it uses a circle

detection algorithm [14]. Ribnick et al proposed a Charge-Coupled Device

camera mounted next to the manipulator whereas Cigliano et al. had one on top

of a manipulator. Cigliano et al. also discussed how a stereo camera system is

usually used for “RoboCup” competition humanoid robots.

The paper from Belousov [2] mentioned before, states that the catching heuristics

theories are in fact optimal control policies. The method proposed relies on

complex stochastic optimal theory rather than simple heuristics. Unfortunately,

there is no “generally accepted model that explains empirical observations of

human interception of airborne balls”.

Chapman’s theory LOT is introduced, as well as an enhanced version from

McLeod [15] incorporating visual observations (generalised optic acceleration

cancellation (GOAC)). McLeod adds a constraint to Chapman’s LOT, which is “to

control the rate of horizontal rotation necessary to maintain fixation on the ball”.

The optimal control problem under uncertainty is implemented using:

• MPC approach

• CasADi to compute the derivatives and cost function

• Ipopt to carry out the non-linear optimisation

Their results show that when the agent can continuously track the ball, the

heuristics approach holds; when the tracking is interrupted (agent turning away

from the ball to run faster), the optimal control theory answers the problem.

The tracking interruption can also correspond to the object going out of the field

of vue of a camera. This highlights the importance of control theory in our

research.

Chapman’s strategy has been implemented in a simulation, adding the “catcher’s

own acceleration and the visuo-motor delay” in [16]. The Chapman’s theory was

proven to be “robust against the effect of the catcher’s own acceleration on the

optical acceleration of the fly ball and the introduction of visuo-motor delays” and

9

“robust against air friction. Some minor observations, however, were in

contradiction with the theory. A similar experiment has been conducted by Zaal

and can be found in [17].

Kober et al. and Flash et al. mentioned that humans rely on motor primitives and

reinforcement learning (RL) to learn new motor skills [18][19]. Kober et al. went

on to show how reward-based RL can learn “single-stroke or rhythmic” tasks

[20][21].

Ijspeert et al. suggested the use of nonlinear differential equations whereby two

dynamic systems are used but one system drives the others for a more stable

system [22]. This means the systems do not require to learn entire dynamical

systems.

Previous work of Kim [23] used a iCub robot in the simulation environment and a

7-DOF robot arm (KUKA LWR 4+) in the real world experiment. Similarly, the

work of Bäuml [24] implemented their proposed method by using a DLR-LWR- III

arm with DLR-Hand- II which are a 7-DOF robot arm and a 12 DOF hand.

From the sensor’s aspect, works form Rollin’ Justin [25] [26] [27] used stereo

cameras and IMU to determine the robot pose. They managed to achieve a

catching rate of almost 80%. The work of Kim [23] which used iCub also had

stereo cameras (double lens, bi-focal lens or 4 cameras - 2 per eye) according to

the wiki of iCub [28].

Nemec et al. and Kober et al. compares the two approaches of using Dynamic

motion principles and reinforcement learning.[18][29][20] In a machine vision

system the use of Kalman filter OpenCV and ASUS Xtion PRO LIVE camera

system are used for Disney research in a catch and juggling robot named Sky.[30]

This is a multi-camera system. They also use OpenNI to track the human

throwing the ball.

10

A more recent system by researchers at Princeton University, Google, Columbia

University, and, Massachusetts Institute of Technology, authored by Zeng et

al.[31] explores the tossing robot with the use of the UR5 manipulator as well as

later on a catching system with another UR5 systems working in tandem. This

research was published at the half-way point about one month (31 days) after we

started our project and is a highly advanced system.

The components of recent works used can be summarized: simulation

environment, robot arm, robot manipulator and visual sensors (cameras). The

simulation environment can test algorithms in a virtual environment without real

experiment setting up for the time efficient and cost. Different models can be

created and transfer to the simulation environment. In the real application, a robot

arm is need for the experiment. It will define the reaching space for the

experiment. The manipulator contains the robot’s catching ability and need to be

selected according to the experiment specifications.

The fourth objective of the study (the first three objectives are detailed in section

0) is then to create a virtual environment for the robot to test the control approach

and to make it learn machine learning policies.

11

3 Project management

3.1 Project initialisation

The project has been led by 3 novice robotics students for a period of 75 days.

During the project initialisation, a project breakdown structure composed of 6

main tasks has been considered. These main tasks are presented in section 3.2.

A thorough project risk assessment has also been carried out to prevent serious

issues. It is displayed in Appendix B.

A weekly basis for the meetings with the supervisors has been chosen to let

enough time for the students to work on their respective tasks, but also to monitor

them and prevent them from going off-topic.

3.2 Task allocation

For each main task, a leader has been chosen in order to equally distribute the

workload.

1. Literature review – Chirantan

This main task includes: literature review, study of influent papers with regard to

ball catching research.

The Gantt is displayed in Figure C.2.

2. Specifications – Yang

This main task includes: analysis of the components, software, hardware used by

the researchers (literature review) to meet the targets, analysis of the connection

constraints (between components).

The Gantt is displayed in Figure C.3.

3. Implementation strategy – Achille

This main task includes: basic algorithms considerations, hardware and software

testing (before implementation).

The Gantt is displayed in Figure C.4.

12

4. Implementation and coding – Yang

This main task includes: debugging, creation of ROS network, communication

between software/hardware and other components, assembling.

It represents the main part of the project and is critical for the project.

The Gantt is displayed in Figure C.5.

5. Testing verification validation – Achille

This main task includes: tests to validate the behaviour of the systems, re-

programming if needed.

The Gantt is displayed in Figure C.6.

6. Deployment and documentation - Chirantan

This main task includes: deployment of the system and write-up of the

documentation.

The Gantt is displayed in Figure C.7.

Overall, the workload tended to the following distribution:

• Achille (40%)

• Yang (40%)

• Chirantan (20%)

3.3 Time management

With a time management technique, it has been planned to discuss with the

supervisors and follow their guidelines in line with the deliverable dates for each

progression of the project.

The comparison between the expected duration of the main tasks and their real

duration is highlighted in Table 3.1.

13

Table 3.1 - Comparison main task expected duration and real duration

Task Expected duration Real duration

Literature review 1 week 10 days

Specifications 1 week 5 days

Implementation strategy 3 weeks 20 days

Implementation and coding 3 weeks 20 days

Testing verification validation 1 week 14 days

Deployment and documentation 1 week 6 days

The Milestones (mostly secondary reports) are described in each Gantt chart

displayed in Figure C.1.

From Table 3.1, it can be noticed that the first three main tasks were completed

in time. However, delay started to accumulate from the implementation strategy

task due to compatibility and connection issues (which implied a non-negligible

part of debug time). The implementation of the ROS control also added a

significant delay. Finally, the reinforcement learning part has been slightly

overlooked due to time constraints.

14

4 System specifications

4.1 Performance

The systems need to be able to process or compute data in order to predict the

trajectory of a ball and probability of where and whether it will reach. Thus, the

computer specs must be set and are necessary to train a reinforcement learning

algorithm (or even a simple control algorithm).

4.2 External Interfaces

The inputs for the software system are the raw image data and measured

distance which is captured by the stereo camera and ultrasonic sensor. The

image data will give the information about current state containing the ball’s

existence, position in the image. That information will be used by the software

system for estimating the position, velocity, and training the robot’s optimal policy.

The output is the action of the robot, which is its catching position. This position

will be given to the motion planning function which can compute the inverse

kinematics and then pass the results of required information about the joint angles

to the controller to control the step motors.

4.3 Hardware System

The hardware system requires sensors, processors, computers, microcomputers,

and vision sensors (passive and active).

4.3.1 Dobot Magician

The robot to be used is called “Dobot Magician”. It is a 4 DOF desktop fit robotic

manipulator arm. It has inbuilt software and hardware of its own. The forward and

inverse kinematics of the robot are given in [32].

15

The specifications for the Dobot can be found in [33] and the dimensions are

shown in Figure 4.1.

4.3.2 Microsoft Kinect

Microsoft Kinect version 2 has been used. It has a wide-angle time-of-flight

camera (ToF camera) and can process 2 gigabits of data per second in order to

read its environment, however only usb 3.0 is supported. According to its

specification [34], the working range is defined in Figure 4.2. The working

distance for depth detection is from 0.5m to 8m and the working angles are 0-70

degrees horizontally and 0-60 degrees vertically.

Figure 4.1 - Dobot Magician dimensions and joint limits

16

4.3.3 Raspberry Pi

Ubuntu OS (or other Linux OS) has been used on a computer to simulate and

train machine learning/reinforcement learning algorithm.

A single-board computer (SBC) like “Raspberry Pi”, shown in Figure 4.3, has also

been used to connect extra components such as sensors.

Figure 4.3 - A basic structure of a Raspberry Pi 3 Model B V1.2

Figure 4.2 - Range of detection of Kinect V2

17

The Raspberry Pi 3 Model B is the 1st model of the 3rd generation of Raspberry

Pi. It replaced the Raspberry Pi 2 Model B. It was released in February 2016 [35].

It has the following specifications as indicated by the “Raspberry Pi Foundation”

itself [35]:

• Quad Core 1.2GHz Broadcom BCM2837 64bit CPU
• 1GB RAM
• BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board
• 100 Base Ethernet
• 40-pin extended GPIO
• 4 USB 2 ports
• 4 Pole stereo output and composite video port
• Full size HDMI
• CSI camera port for connecting a Raspberry Pi camera
• DSI display port for connecting a Raspberry Pi touchscreen display
• Micro SD port for loading your operating system and storing data
• Upgraded switched Micro USB power source up to 2.5A

4.4 Functions

The “In-to-Net Bot” is defined by two main functions, based on Figure 4.4

The first main function is the ball catching function achieved by nonlinear

optimisation control. The ball is detected by the sensors which give the necessary

information to the controller which generated joint angles for the manipulator to

catch the ball.

The second main function is the ball catching function achieved by Reinforcement

Learning. The ball is still detected by the sensors which give the necessary

information to the controller which tries joint angle configurations for the

manipulator to catch the ball. Those configurations are updated by the new policy

at each throw.

18

Ball Controller ManipulatorSensors

Figure 4.4 - Product main function basis

4.5 Architecture

ROS is used in the project. It is a robotics middleware which collects necessary

software for robots. It provides services such as hardware abstraction, low-level

device control, implementation of commonly used functionality, message-passing

between processes, and package management [36].

By researching those physical engines, Gazebo is selected as our training

environment in the 3D space as Gazebo is already implemented in ROS [36] and

there are full documentation explaining the techniques inside it.

The latest version of ROS is called Melodic Morenia, however the most widely

used version is Kinetic Kame currently. The most common used and supported

platform for installing ROS is Linux especially Ubuntu system [37]. The ROS

Kinetic Kame is long term available for Ubuntu Xenial (16.04 LTS) and the

recommended installation process is provided in [38].

In 2019, the work of X. Ling [39] used vision system to help robot harvesting

tomato. Their system structures are divided into a hardware layer and software

layer. Thus, similar approach can be made for our real time operating system,

whose architecture is defined as Figure 4.5.

19

Figure 4.5 - Software architecture

The functions will receive the data from sensors and then process them on the

PC or Raspberry Pi. ROS is the middleware connecting the hardware and

software together. The functions relation are presented in Figure 4.6, the

decision-making function is the one we need to train with machine learning or

deep learning.

Figure 4.6 – Detail functions architecture

20

4.6 Implementation strategy

The system is divided into 3 main categories: The Robot system (Dobot

Magician), the sensors and the computing platforms. They all interact with each

other and with the external actors (the human and the ball). Figure 4.7 describes

the interactions between each sub-system and the type of interfaces required.

Table 4.1 describes the interfaces in detail.

 Figure 4.7 – Product perspective and interfaces

21

Table 4.1 - Interfaces description

Interface Type Details

Human /

Ball
PI The Human or user grabs the ball to throw it at the Dobot

Human /

Computer
PI

The Human can set up the robot using the computer. The user

can also stop the experiment if needed.

Ball /

Stereo

camera

SI
The Kinect detects the ball and analyses features used for

control / machine learning.

Stereo

camera /

Computer

EI

The Kinect is connected to the computer using a USB (3.0)

cable and shares the data recorded about the ball (and the

background).

Net /

Manipulator
MI

The net is attached to the Manipulator and represents the end-

effector the Dobot Magician. The ball thrown is caught in the

net.

Manipulator

/ computer
EI

The Dobot is connect to the computer using a USB cable and

is controlled using DobotStudio.

Net /

Ultrasonic

sensor

MI The Ultrasonic sensor is fixed onto the net.

Ultrasonic

sensor /

Raspberry

pi

EI

The Ultrasonic sensor is connected to the Raspberry PI to

receive power and to share data to the computer. The

connection is achieved using 1x 1kΩ resistor, 1x 2kΩ resistor,

1x power interface board, 8x jump wires. The set-up is

explained in [40].

Ultrasonic

sensor /

Ball

SI
The Ultrasonic sensor detects the passage of the ball through

the net.

22

Raspberry

Pi /

Computer

EI

The Raspberry Pi is connected to the computer through Wifi,

but the communication needs to be set up using 1x Ethernet

cable, 1x SD card, 1x Putty client for Windows (explanations in

[41]).

Gazebo /

Computer
VI Gazebo is launched on the computer using ROS.

The main user interfaces displayed on the computer are:

• a custom DobotStudio interface to interact with the Dobot (and stop it in
case an incident happens). It can also be a command prompt window.

• a custom window displaying the outputs of the Dobot training (for Machine
Learning method) and the outputs of Dobot tests (for nonlinear control
method).

The main user interfaces are aimed at the user, to help supervise the robot

system.

Memory constraints are crucial for the Machine Learning method. The RL

program cannot be used on the Raspberry Pi directly because it generates heavy

computational cost. Moreover, Gazebo is used to train the RL algorithm in the

virtual environment, however it requires Nvidia or ATI graphics cards [42].

Besides, camera information is needed to view the robot state through Rviz.

Those requirements can’t be met as Raspberry Pi doesn’t have a powerful

enough GPU or any USB 3.0 port. A computer meeting the requirements is

therefore chosen to handle stereo-camera connection and Gazebo virtual

environment display [42].

23

5 Implementation and testing

5.1 Overview of the system

The implementation has been divided into 2 main parts:

• Physical ITNB (composed of a Kinect version 2, a Dobot Magician with a

net to catch the ball, a table tennis ball for testing – shown in Figure 5.1)

Figure 5.1 - Physical ITNB overview

Dobot Magician

Kinect version 2

Net

(table tennis ball size)

24

• Virtual ITNB (composed of a mechanical model of the Dobot Magician

with a net to catch the ball, a model of a table tennis ball, a Kinect Gazebo-

ROS plugin – shown in Figure 5.2)

This step follows the implementation strategy step where the components and

the software have been chosen and tested.

Figure 5.2 - Virtual ITNB overview

Ball model

Dobot model

Kinect camera POV

25

5.2 Physical ITNB

5.2.1 Mechanical structure

The ITNB main mechanical structure is based on the Dobot Magician structure

whose specifications are shown in [43] and in Figure 4.1. It is composed of 4

degrees of freedom (4 DOF): one base joint, one shoulder joint, one elbow joint

and one wrist joint to maintain the end-effector parallel to the “ground”, as shown

in Error! Reference source not found., extracted from [44].

Figure 5.3 - DOBOT joint angles

26

The robot is made of ABS (Acrylonitrile Butadiene Styrene) engineering plastic

and Aluminum Alloy 6061, therefore it is very robust. Moreover, its small size

(height < 30cm) and its small weight (< 500 g) are adapted to laboratory testing

without bulky security systems (fences, laser curtains…).

The net, shown in Figure 5.4, has been designed using Catia V5 to fit the Dobot

end-effector attachment point (prismatic shape). The hole only has a 0.5mm extra

diameter than a standard table tennis ball.

Due to 3D printing issues with the Dobot Magician (PLA material used), a

temporary net made of Plexiglas and shown in Figure 5.1 has been used.

Figure 5.4 - ITNB Net CAD design

27

5.2.2 Joint control

As a first approach to control the position of the net, a forward kinematics model

and an inverse kinematics model of the net have been considered.

The forward kinematics model ensures that the net is correctly moved in the 3D

space, depending on joint angles. The modified Denavit-Hartenberg (DH)

parameters [45] provide a parametrisation for the forward kinematics model. The

modified DH parameters for the Dobot and net are shown in Figure 5.5.

𝐸

𝜃4

𝑥4

𝑦4

𝑧4

𝑥𝑒

𝑦𝑒

𝑧𝑒
𝑥1

𝑥2

𝑦1
𝑦2

𝑧1

𝜃1
𝑧2

𝑥0 00

𝑦0
𝑧0

𝑑1

𝜃2

𝜃3

𝑥3

𝑦3

𝑧3

𝑎2 𝑎3 𝑎4

Dobot net – top view

Attachment to robot arm

𝑎4

𝑥𝑒

𝑧𝑒

𝑦𝑒 𝐸

Figure 5.5 - Dobot forward kinematics model (DH parameters)

28

Table 5.1 gathers all the DH parameters needed to derive the forward kinematics.

Table 5.1 - DH parameters for Dobot Magician

Link 𝒊
𝜶𝒊−𝟏

(degrees)
𝒂𝒊−𝟏 (mm) 𝒅𝒊 (mm) 𝜽𝒊 (degrees)

1 0 0 𝑑1 𝜃1

2 𝛼1 = 90 0 0 𝜃2

3 0 𝑎2 0 𝜃3

4 0 𝑎3 0 𝜃4

5 0 𝑎4 0 end-effector (net)

The dimensions of the Dobot Magician are indicated in Table 5.2.

Table 5.2 - DH parameter values

Parameter Value

𝑑1 140 mm

𝑎2 135 mm

𝑎3 147 mm

𝑎4 Defined by the net (12 mm)

Using the transformation matrix from link {i-1} to link {i},

𝑇𝑖
𝑖−1 = [

cos (𝜃𝑖) −sin (𝜃𝑖) 0 𝑎𝑖−1

sin(𝜃𝑖) cos (𝛼𝑖−1) cos(𝜃𝑖) cos (𝛼𝑖−1) −sin (𝛼𝑖−1) −sin (𝛼𝑖−1)𝑑𝑖

sin(𝜃𝑖) sin (𝛼𝑖−1)
0

cos(𝜃𝑖) sin (𝛼𝑖−1)
0

cos (𝛼𝑖−1)
0

 cos (𝛼𝑖−1)𝑑𝑖

1

]

The transformation matrix from end-effector {5} to the base {0} can be obtained,

𝑇5
0 = 𝑇1

0 𝑇2
1 𝑇3

2 𝑇4
3 𝑇5

4

29

On the other hand, the objective of inverse kinematics is to determine the joint

angles. The geometric method is used since it is the simplest method for this kind

of problem. The method is inspired from [46].

A comprehensive explanation of the inverse kinematics equations is given in

Appendix A.

As a second approach to connect the Dobot to the other components of the

physical ITNB, a ROS network has been created. Specifically, a ROS node

(explained in section 5.2.2) depending on Dobot ROS Service (supplied by

Dobot customer service), has been created to control the robot arm. An end-

effector offset has been included in the C++ functions to consider the position of

the centre of the net (moved to a target position determined by the Kinect and

its ROS node, explained in section 5.2.7).

The Dobot ROS API description (providing C++ functions) is downloadable and

explained in [47].

30

5.2.3 Robot Perception Overview

The robot perception is a key part to achieve ball catching task in our project. The

robot needs to have the object's position information in real-time to estimate ball's

landing point.

The robot perception can be divided into two main components, object detection

part and 3D coordinate transformation part respectively. The object detection part

is used for detecting the object in real time while receiving images from Kinect 2

sensor. The second part is used for obtaining object's real-world coordination

from the detection information.

5.2.4 Object detection - tracker

In 2015, a tracker with Kernelized Correlation Filters (KCF) was proposed by João

F. Henriques [48] which showed promising results in object tracking. Thus, the

first object detection attempt in our project is using an object tracker as mentioned

above. Following the documentation of opencv tracker [49], the KCF tracker was

implemented in our project. However, due to the unstable light condition and

relative high computation demand of this filter, the tracking result’s accuracy isn’t

sufficient for our high-speed flying ball application.

Figure 5.6 - OpenCV KCF tracker structure

31

5.2.5 Object detection – color detection in each frame

In order to have a more accurate detection of object, another solution of using

color detection in each frame was implemented. In the previous work of Neves in

2015 [50], a framework of using RGB color and depth information to detect a

flying ball has been raised. In our application, the object detection is also

implemented by threshing the image’s color. The color thresholding operations

are done in HSV colorspace which is a model to represent the colorspace similar

to RGB model [51].

The HSV stands for Hue, Staturation and Value in the colorspace, RGB stands

for Red, Green and Green values in the colorspace as shown in Figure 5.7 and

Figure 5.8.

Figure 5.7 - HSV presentation

Figure 5.8 - RGB presentation

32

The first ball detection framework is illustrated in Figure 5.9. The detection is done

in each frame by using the HoughCircle detection [52] on the thresholded image.

Figure 5.9 – First detection framework

Theoretically, the HoughCircle detection can perfectly detect the ball in each

frame as it is a circle in the image. However, due to the light condition, the

threshed object image could be a semi-circle or even not a circle. Due to that

factor, a second detection framework which switched the detection mechanism

to blob detection was purposed and implemented. The blob detection is basically

extracting a group of pixels which has similar color or other features like circularity

and convexity [53]. The second detection framework is illustrated as Figure 5.10.

Figure 5.10 - Second detection framework

5.2.6 Depth acquisition and coordinates transformation

Although the detection part gives the position of ball on the image, it still isn’t a

real-world coordinate of the object. According to the description of Kinect 2 sensor

working range and angles in Figure 4.2, two projections in x and y directions can

be founded in Figure 5.11. The meanings of parameters are declared in Table

5.3.

Extract object
HSV values'

range

Thresh the
background
image with
target's HSV

range.

Using circle
detection to
detect the
ball on the
Threshed

binary image

Extract the
ball's position
from image

Extract object
HSV values'

range

Thresh the
background
image with
target's HSV

range.

Using blob
detection to
detect the
ball on the
Threshed

binary image

Extract the
ball's position
from image

33

Figure 5.11 - Projections

Table 5.3 - Projections parameters

Parameter Physical meaning Values

𝛼 Horizontal angle of vision 70 degrees

𝛽 Vertical angle of vision 60 degrees

𝑋𝑠 Object’s screen position

in x direction

𝑌𝑠 Object’s screen position

in y direction

𝑆𝑤 Screen width 1920 pixels

𝑆𝑦 Screen height 1080 pixels

𝐹𝑥𝑠 Focal length in width

projection

𝐹𝑦𝑠 Focal length in height

projection

𝑋𝑤 Object’s real-world

position in x direction

𝑌𝑤 Object’s real-world

position in y direction

𝑍𝑤 Object’s real-world

position in z direction

34

The focal lengths can be obtained by using screen’s size and sensor’s angle of

vision information as follows.

1
2 ∗ 𝑆𝑤

𝐹𝑥𝑠
= tan

𝛼

2
 ,

1
2 ∗ 𝑆𝑦

𝐹𝑦𝑠
= tan

𝛽

2

𝐹𝑥𝑠 =

1
2

∗ 𝑆𝑤

tan
𝛼
2

𝐹𝑦𝑠 =

1
2 ∗ 𝑆𝑦

tan
𝛽
2

During the detection, the object’s screen position (𝑋𝑠, 𝑌𝑠) is obtained, the

distance 𝑍𝑤 is also obtained by registration the depth information via

librefreent2 driver [54]. Then, using similar triangles, the object’s real-world

position can be deduced as follows.

𝑋𝑤

𝑋𝑠
=

𝑍𝑤

𝐹𝑥𝑠
 ,

𝑌𝑤

𝑌𝑠
=

𝑍𝑤

𝐹𝑦𝑠

𝑋𝑤 = 𝑋𝑠 ∗
𝑍𝑤

𝐹𝑥𝑠
 , 𝑌𝑤 = 𝑌𝑠 ∗

𝑍𝑤

𝐹𝑦𝑠

The final representation of 𝑋𝑠 and 𝑌𝑠 can be obtained by replacing the deduced

focal lengths, thus the expressions of object’s real-world position are as

presented below,

𝑋𝑤 = 𝑋𝑠 ∗
𝑍𝑤

1
2

∗ 𝑆𝑤

∗ tan
𝛼

2

𝑌𝑤 = 𝑌𝑠 ∗
𝑍𝑤

1

2
∗𝑆𝑦

∗ tan
𝛽

2
Figure 4.2 - Range of detection of Kinect V2

𝑍𝑤Figure 4.2 - Range of detection of Kinect V2Figure 4.2 - Range of detection

of Kinect V2

35

5.2.7 Ball trajectory estimation

The ball trajectory estimation task has been performed using Kinect version 2 to

retrieve 2 frames from a live video feed, then extract the initial position and initial

velocity vector to feed 3D trajectory models. The 3D trajectory models can be

obtained from 2D trajectory models by rotating the 2D plane around the axis

perpendicular to the “ground” (for instance in Figure 5.12, the rotation axis could

be the �⃗� axis).

Two different approaches have been considered for the ball trajectory:

• Ball motion without air resistance

According to Newton’s 2nd law of motion,

∑ �⃗� = 𝑚�⃗�𝐺

�⃗�

�⃗�

0

�⃗�

𝑉0𝑥
ሬሬሬሬሬሬ⃗

𝑉0𝑦
ሬሬሬሬሬሬ⃗

𝑉0
ሬሬሬ⃗

ℎ0

𝜃0

Figure 5.12 - 2D initial conditions for ball trajectory

36

The projection onto the axes 𝑥 and �⃗� gives,

𝑚𝑎𝑥 = 0

⇔ 𝒂𝒙 = 𝟎

𝑚𝑎𝑦 = −𝑚𝑔

⇔ 𝒂𝒚 = −𝒈

Integrating the acceleration,

𝒗𝒙 = 𝑎𝑥𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑣𝑥(𝑡 = 0) = 𝑣0𝑥 = 𝒗𝟎𝐜𝐨𝐬 (𝜽𝟎)

𝒗𝒚 = 𝑎𝑦𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝑔𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝒈𝒕 + 𝒗𝟎 𝐬𝐢𝐧(𝜽𝟎) [𝑢𝑠𝑖𝑛𝑔: 𝑣𝑦(𝑡 = 0) = 𝑣0𝑦 = 𝑣0sin(𝜃0)]

Integrating the velocity,

𝒙 = 𝑣𝑥𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝒗𝟎 𝐜𝐨𝐬(𝛉𝟎) 𝒕 [𝑢𝑠𝑖𝑛𝑔: 𝑥(𝑡 = 0) = 0]

𝒚 = −
1

2
𝑔𝑡2 + 𝑣𝑦𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −

𝟏

𝟐
𝒈𝒕𝟐 + 𝒗𝟎 𝐬𝐢𝐧(𝜽𝟎) 𝒕 + 𝒉𝟎 [𝑢𝑠𝑖𝑛𝑔: 𝑦(𝑡 = 0) = ℎ0]

The coordinates (𝒙, 𝒚) represent the ball position at time t in Figure 5.12.

• Ball motion with air resistance

In order to determine the representation of the air resistance, the Reynolds

number 𝑅𝑒 must be calculated (cf. [55]).

𝑅𝑒 =
𝜌𝑙𝑣

𝜂

Where 𝜌 is the fluid density (in the study case, the air density), 𝑙 is the

characteristic cross-sectional length (the length of the fluid flow, in the study case

it is the diameter of the ball), 𝑣 is the velocity relative to the fluid (in the study case

it can be approximated by the initial velocity of the ball 𝑣0), 𝜂 is the fluid viscosity

(in the study case, the viscosity of the air).

The representation of air resistance depends on 𝑅𝑒:

• If 𝑅𝑒 << 1, the air resistance is supposed to be linear

• If 𝑅𝑒 > 1000, the air resistance is supposed to be quadratic

• In between, in depends on the case.

37

The force of air resistance (linear case) can be represented by,

𝐹𝑟𝑒𝑠𝑖𝑠𝑡
ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = −𝑐�⃗�

The coefficient 𝑐 is the air resistance coefficient,

𝐹𝑟𝑒𝑠𝑖𝑠𝑡
ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = −𝑐�⃗� = −

1

2
𝜌𝑐𝐷𝐴�⃗�

Where 𝑐𝐷 is the drag coefficient [56] and can be calculated using Brown and

Lawler formula for 𝑅𝑒 < 2 × 105 (considered to be always verified in the study

case),

𝑐𝐷 =
24

𝑅𝑒
(1 + 0.15𝑅𝑒

0.681) +
0.407

1 + 8710𝑅𝑒
−1

𝐴 is the cross-sectional area facing the flow (in the study case it is the surface

of the circle whose diameter is the same as the one of the ball), 𝜌 is the fluid

density.

From Newton’s second law of motion, adding the force of air resistance,

𝑚𝑎𝑥 = −𝑐𝑣𝑥

⇔
𝒅𝒗𝒙

𝒅𝒕
= −

𝒄

𝒎
𝒗𝒙

𝑚𝑎𝑦 = −𝑚𝑔 − 𝑐𝑣𝑦

⇔
𝒅𝒗𝒚

𝒅𝒕
= −𝒈 −

𝒄

𝒎
𝒗𝒚

This system of differential equations can be solved using “odeint” [57] in python

language for instance.

The force of air resistance (quadratic case) can be represented by,

𝐹𝑟𝑒𝑠𝑖𝑠𝑡
ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = −𝑐‖�⃗�‖�⃗�

The equations can be solved as shown in [58], but the python approach using

“odeint” is chosen because faster.

38

From Newton’s second law of motion,

𝑚𝑎𝑥 = −𝑐 (√𝑣𝑥
2 + 𝑣𝑦

2) 𝑣𝑥

⇔
𝒅𝒗𝒙

𝒅𝒕
= −

𝒄

𝒎
(√𝒗𝒙

𝟐 + 𝒗𝒚
𝟐) 𝒗𝒙

𝑚𝑎𝑦 = −𝑚𝑔 − 𝑐 (√𝑣𝑥
2 + 𝑣𝑦

2) 𝑣𝑦

⇔
𝒅𝒗𝒚

𝒅𝒕
= −𝒈 −

𝒄

𝒎
(√𝒗𝒙

𝟐 + 𝒗𝒚
𝟐) 𝒗𝒚

Both approaches have been gathered into one realistic test, shown in Figure 5.13.

The initial conditions for the simulation of the ball trajectory are the following,

• 𝑑 = 4.0 × 10−2 𝑚 (diameter of the “table tennis” ball)

• 𝑣0 = 2.5 𝑚/𝑠

• 𝜃0 = 1.2 𝑟𝑎𝑑

• ℎ0 = 1.2 𝑚

• 𝑔 = 9.81 𝑚/𝑠²

According to the similar results for a throwing distance < 2m over multiple tests,

the chosen approach has been the trajectory model without air resistance, in

order to speed up the calculation and therefore the communication between the

components.

Figure 5.13 - simulation of ball trajectory

39

5.2.8 ROS communication

• RQT graph

• C++ / python node connexion

ROS contains multiple components including Nodes, Master, Parameter server,

Messages, Topics, Services and Bags [59]. A ROS computational graph is

presented in Figure 5.14. Nodes are the basic function unit for ROS and support

C++ and python languages. Master is a central process that enable different

nodes can find each other in order to communicate, the communication is done

by sending and receiving data to or from a topic.

Figure 5.14 - ROS computational Graph Level

In our application, the communication is realized by two types of nodes, they are

publishing node and subscribing node specifically. The publishing nodes will

publish data to object position and estimation position topics, then the subscribing

nodes will subscribe to those topics and use those data to control the robot. Our

ROS communication structure is presented in Figure 5.15.

40

Figure 5.15 - ROS communication structure

For the robot control part, there are interactions of request and reply existing and

those interactions can be implemented via ROS Service as DobotServer in Figure

5.15.

41

5.2.9 Reinforcement learning perspective

An ultrasonic sensor (Hc-Sr04 – presented in Figure 5.16) has been added to

help the robot know when the ball successfully went through the net during

reinforcement learning process. The sensor has been connected to a raspberry

PI to integrate it to the ROS network created.

The connection process is explained in [40].

The sensor can be easily screwed under the net as shown in Figure 5.17 (to avoid

detection if the ball bounces on the ring of the net).

According to the tests performed using signal analysis, the range of the sensor

is: 2.5cm to 380cm. Thus, the hole on the net has been offset from the Dobot

attachment point to ensure that the ball will not fall in the “dead zone” of the

sensor.

Figure 5.16 - Hc-Sr04 sensor

and Ultrasonic sensor

connected to Rapsberry pi

42

The Raspberry Pi and HC-SR04 sonar sensor are operational for reinforcement

learning applications using the physical ITNB. However, the net shown in Figure

5.17 has not been produced yet (a replacement has been in use for experimental

purposes, as shown in Figure 5.1).

Figure 5.17 - ITNB net and ultrasonic sensor

43

5.3 Virtual ITNB

5.3.1 Mechanical model in Gazebo

The CAD model of the Dobot Magician has been supplied by the Dobot customer

support. The net, described in Figure 5.4, has been added to the robot arm using

Catia V5. The assembly is shown in Figure 5.18.

However, the CAD materials and the inertial matrices have not been provided by

the Dobot customer support. The materials (described in section 5.2.1) have been

created using Catia V5 and the inertial matrices have been calculated using

MeshLab [60] and Blender [61].

The results from MeshLab were obtained considering homogeneous mass

repartition and were cross-checked with the results from Catia V5 (where

materials were applied).

Blender has been used to create a URDF description [62] of the ITNB. This

description is supposed to be universal but can only be applied to open-

kinematics chains. The ITNB has been considered as an open-kinematics chain

even if the Dobot is composed of a closed-kinematics chain (using links to

Figure 5.18 - Dobot Magician and net assembled

44

maintain the end-effector parallel to the “ground”). The robot can then be

spawned in Gazebo [62] using the URDF description.

5.3.2 Joint control in with Rviz and Gazebo-ros control

Once the robot has been spawned in the Gazebo environment, the joints are not

controlled by default.

A simple solution is to add a gazebo-ros controller [63]. This controller can take

the form of a PID controller. It is manageable for robots with a few DOFs. For

instance, a sliding net can be controller using a PID controller tuned with rqt

(software framework of ROS that implements the various GUI tools in the form of

plugins [64]). The sliding net along 𝑥 axis, shown in Figure 5.19, has been

implemented to run the first reinforcement learning tests. The sliding net along 𝑥

axis has been implemented to run the first reinforcement learning tests (1D

movement of the net and 2D movement of the ball).

The simple control concept in Gazebo can be extended to open-kinematics

manipulators using Rviz [65] and Moveit! [66], a motion planning framework for

ROS. The control of closed-kinematics manipulators is not yet handled by those

Figure 5.19 - Sliding net in Gazebo

45

frameworks. Consequently, the ITNB has been modelled with 4 joints (last joint

for the end-effector supposed to be maintained parallel to the “ground”). The

result of the joint control is shown in Figure 5.20. The red cube represents the

centre of the net and is moved to a desired target position (determined by the ball

trajectory estimation).

Rviz and Gazebo can exchange data through ROS nodes: Gazebo tells Rviz the

target position of the end-effector, and Rviz sends back the joint angles to reach

the desired target.

5.3.3 Ball motion in Gazebo

Two approaches have been considered to describe the ball motion in Gazebo:

• Model creation and C++ programming using ROS nodes

This approach is complex because it involves the creation of multiple ROS nodes

interfaced with Gazebo to describe the behaviour of the ball and to spawn new

models of the ball once a ball has been thrown.

It is however a comprehensive way of coding the ball motion since it includes

collisions and uses the physics engine within Gazebo.

Figure 5.20 - Rviz model of virtual ITNB

46

• Animation definition using Gazebo node

On the other hand, a very simple method to describe the movement of a ball is

by using the animation tool [67] provided by Gazebo (using a Gazebo node).

The main drawback is that the physics engine is not solicited by the animation,

which means that the ball will not bounce. Still, the ball can be seen by a ROS-

kinect plugin, which makes this approach interesting.

The ball motion (animation) is shown in Figure 5.19, along with the sliding net.

5.3.4 Reinforcement Learning in 2D environment and Gazebo

A 2D prototype environment was made to simulate a ball catching robot as shown

in Figure 5.21. This environment is created by using pygame [68] which is an

open Source python programming language library for making multimedia

applications like games in 2D.

Figure 5.21 - 2D pygame environment

In the 2D environment, a red ball will drop from the left side with a random velocity,

its target position is in the range of semi-circle. The agent (robot) can only move

47

inside the semi-circle range. The agent’s task is trying to catch the ball before it

landed inside the moving range

The implemented algorithm is based on ACKTR which is proposed by Yuhuai

Wu in 2017 [69]. This algorithm is an improvement of actor-critic [70] whose

structure is presented in Figure 5.22. One improvement is adding multiple

workers which can be understood as sub-environments instead of just having one

environment, that permits agents can explore the same environments

asynchronously which can be seen in Figure 5.23.

Figure 5.22 - Actor-Critic structure

48

Figure 5.23 - Asynchronous Actor Critic

A gym-gazebo toolkit has been used for the gazebo environment and enables

the use of gym which is an Openai reinforcement learning toolkit.

49

6 Validation

6.1 Physical ITNB

6.1.1 Robot control results

In order to validate the behaviours of real robot control, a 10 points data set are

tested repeatedly to exam the repeatability of dobot, the tested data can be found

in the GitLab repository/Blackboard repository. To visualize those testing data,

the target points and reached points are plotted and presented in Figure 6.1,

according to the confidence interval, a 95% confident error interval of 5.1787 ±

1.3081 𝑚𝑚 is deduced by using similar approach of positioning error analysis of

Chen.J’s work in 1986 [71].

Figure 6.1 - Joint control repeatability

Although small errors can be found from the visualization and error interval

results, the Dobot claims that the error could be limited in 0.2mm [72], which is

much smaller than our result. There are several potential reasons causing that

result, such as the links are rigid bodies, the servo motor angular position is

influenced by speed (high speed overshoots angle), the precision of tools (we

used the type measurement whose precision is 1mm) and the alignment of the

pen and pen holding for drawing the points. Thus, a more precise measurement

50

such as laser measurement can be considered as an improvement method in the

future, angle measurement could also be tested.

6.1.2 Object detection results

As explained in section 5, two detection methods which are static condition (static

ball) and dynamic condition (flying ball) are implemented in our application. The

circle detection and blob detection methods are tested in static and dynamic

condition separately to exam their performance. Their performances are valued

by frame per second (fps), success rate and error interval.

In both static and dynamic conditions, the blob detection method outperformed

circle detection method in processed frames per second as shown in Figure 6.2

and Figure 6.3.

Figure 6.2 - Static mean fps comparison

51

Figure 6.3 - Dynamic mean fps comparison

In dynamic condition, the success rates of detection in two methods are also

compared, although the blob detection method didn’t give a satisfying success

rate, it is still better than the circle detection method as presented in Table 6.1.

Table 6.1 - Detection comparison confidence interval

Detection

comparision

Mean

norm

error

Standard

Deviation

Z(0.95) Confidence

interval

blob detection 48.0359 24.65659 1.96 15.28231

circle detection 56.61657 20.89561 1.96 12.95124

The blob detection tends to have a smaller error compared with the circle

detection method as shown in Table 6.1.

We couldn’t compare the results with Neves’ work [50] because they do not

provide frame rate, or accuracy. They just highlight that their approach works.

52

It can be noticed that they use a different vision library (still with Kinect): UAVision

computer library.

Nevertheless, we can compare the results with the performance of Rollin’ Justin

[25] bragging a precision of 2cm in space (our results indicate an average

positioning error of 5mm), 5ms in time (our robot takes approximately 1.5 seconds

to reach the target after the ball has been dropped/thrown, which is still too slow

to be able to catch it), 80% catch rate (our results tend to a 15% catch over 100

ball drops, excluding ball thrown). It can be noticed that there is a significant

difference in the material used: custom stereo vision system with high resolution

(1600×1200@25Hz) cameras for instance.

Future works, like using of UKF to smooth the trajectory (Kalman filter

implementation), and machine learning to improve accuracy (learning as filter for

Kinect) can be used in a future implementation of the in-to-net bot.

53

6.2 Virtual ITNB

6.2.1 Net movement (1D control) and ball motion

In order to validate the behaviour of the virtual ITNB, as explained in section 5.2.2,

a sliding net (1D movement) has been designed to simplify the Reinforcement

Learning implementation.

The net can follow a random trajectory of the ball seen from a camera POV.

6.2.2 Simple reinforcement learning implementation

The Reinforcement Learning was to be implemented using gym-gazebo software

[73] based on OpenAI, but the interface turned out to be very complex for custom

robot models and robot environments.

The prototype learning agent in 2D environment (pygame) has therefore been

written to validate whether a robot can learn the ball dynamics. It shows a trend

that the agent can follow the ball’s moving direction and try to catch it. Although

in our training, the robot cannot succeed every time but an increasing catching

rate needs to be pinpointed.

For the reinforcement learning, in each step, the agent’s observation states are

robot’s current position and ball’s current position. The agent’s actions are set as

velocities at current step.

6.2.3 Reinforcement Learning perspective for Gazebo

The python script for Reinforcement Learning showed great progress in the robot

learning of the ball dynamics. The team infers that a simple learning approach

can be implemented for the sliding net and a random trajectory of the ball, shown

in Figure 5.19. If the learning is successful, it can then be extended to the

complete virtual ITNB, shown in Figure 5.2.

54

Several aspects of the reinforcement learning implementation can be improved,

such as:

• Learning parameters to tune (add velocity and other parameters)

• Setup gazebo environment with gym (3D) or ROS nodes (2D)

• Transfer policy from virtual to real robot

55

7 Conclusion

Inspired from recent research in the field of ball catching robots, a successful ball

catching robot has been created, using a Kinect version 2, a Dobot Magician, a

custom net designed with Catia V5, and ROS the open-source, meta-operating

system, to connect all components (software and hardware).

Even if the performance does not equal the 80% successful catching rate of

Rollin' Justin [25], the physical in-to-net bot showed satisfactory results for balls

dropped from human height. However, it needs enhancements for balls thrown

at it.

In order to improve the results of the physical experiment (ball thrown at the

robot), a virtual environment in Gazebo has been created to implement

reinforcement learning. A simple one-dimension model of the in-to-net bot has

been created (sliding net) which is able to follow the random trajectory of a virtual

ball, has been developed. Another model for the complete in-to-net bot has been

created in the Gazebo environment, however, the pure reinforcement learning

has only been theorised and not implemented, neither on the sliding net, nor on

the virtual in-to-net bot. Nevertheless, a simple pygame environment has helped

confirmed that a robot agent can learn ball dynamics based on the position of the

ball received at specific instants. It may also be enhanced by providing the

velocity of the ball to the agent/robot.

Overall, the majority of the objectives have been fulfilled.

Firstly, the ball motion has been converted to a simple entity relative to the robot

(a three-dimensional point in the robot workspace in the case of the physical in-

to-net bot; a three-dimensional point in the Gazebo environment in the case of

the virtual in-to-net bot). Progress can still be made for the physical model, such

as increasing the frame rate captured by the Kinect version 2 and speeding up

the communication through ROS.

Secondly, the ball motion has been effectively modelled and a simple information

(landing point estimation) has been communicated to the robot arm, controlled

and able to reach the target. For the physical model, the ROS Service provided

56

by Dobot company has been used to control the robot. For the virtual model, the

Gazebo-ROS control has been used to control the virtual sliding net and the

virtual in-to-net bot, which also required the use of Rviz/Moveit!.

Thirdly, according to the literature review, reinforcement learning increases the

catching rate of the robot. Even though the reinforcement learning method has

only been tested in a pygame environment, the Gazebo environment is ready to

be tested with simple learning processes, as well as more complex ones. The

impact of reinforcement learning on the catching rate will therefore be confirmed

with future implementation. The physical in-to-net bot is also ready to be tested

with simple learning processes, thanks to the consideration of the net and the

ultrasonic sensor connected to a Raspberry Pi.

Finally, even though the control of the virtual robot has been confirmed by a

Gazebo simulation, the machine learning policies have not been implemented.

As a consequence, the transfer of learning policies from the virtual environment

to the physical environment has not been tested. This step is crucial to validate

the impact of reinforcement learning on the catching rate of the physical robot,

and it can be carried out in future research after a successful implementation of

the reinforcement learning in the simulated environment.

57

REFERENCES

1. Höfer S. On Decomposability in Robot Reinforcement Learning. 2017.

Available at: DOI:http://dx.doi.org/10.14279/depositonce-6054

2. Belousov B., Neumann G., Rothkopf CA., Peters JR. Catching heuristics

are optimal control policies. Advances in Neural Information Processing

Systems 29. 2016; (Nips): 1426–1434. Available at:

DOI:10.1128/AAC.50.4.1612-1613.2006

3. Chapman S. Catching a baseball. American Journal of Physics. : 1968.

4. Christopher John Cornish Hellaby Watkins. Learning from Delayed

Rewards. Cambridge University; 1989. Available at:

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf (Accessed: 13 March

2019)

5. Corke PI. High-Performance Visual Closed-Loop Robot Control By. 1994;

(July).

6. Das S., Das R. Using reinforcement learning to catch a baseball. 2002; :

2808–2812. Available at: DOI:10.1109/icnn.1994.374676

7. Buttazzo GC., Allotta B., Fanizza FP. Mousebuster: a robot for real-time

catching. IEEE Control Systems. February 1994; 14(1): 49–56. Available

at: DOI:10.1109/37.257894

8. Fernandes DG., Lima PU. A testbed for robotic visual servoing and

catching of moving objects. 1998 IEEE International Conference on

Electronics, Circuits and Systems. Surfing the Waves of Science and

Technology (Cat. No.98EX196). IEEE; pp. 475–478. Available at:

DOI:10.1109/ICECS.1998.814924

9. Hong W., Slotine J-JE. Experiments in hand-eye coordination using active

vision. Experimental Robotics IV. 2005; : 130–139. Available at:

DOI:10.1007/bfb0035204

10. Nagashima K., Inaba M., Inoue H., Nishiwaki K., Ionno A. The humanoid

Saika that catches a thrown ball. 2002; : 94–99. Available at:

DOI:10.1109/roman.1997.646959

11. Mnih V., Heess N., Graves A., Kavukcuoglu K. Recurrent Models of Visual

Attention. 2014; : 1–9. Available at: DOI:ng

58

12. Lippiello V., Ruggiero F., Siciliano B. 3D monocular robotic ball catching.

Robotics and Autonomous Systems. December 2013; 61(12): 1615–1625.

Available at: DOI:10.1016/j.robot.2013.06.008

13. Ribnick E., Atev S., Papanikolopoulos NP. Estimating 3D Positions and

Velocities of Projectiles from Monocular Views. IEEE Transactions on

Pattern Analysis and Machine Intelligence. May 2009; 31(5): 938–944.

Available at: DOI:10.1109/TPAMI.2008.247

14. Cigliano P., Lippiello V., Ruggiero F., Siciliano B. Robotic Ball Catching with

an Eye-in-Hand Single-Camera System. IEEE Transactions on Control

Systems Technology. September 2015; 23(5): 1657–1671. Available at:

DOI:10.1109/TCST.2014.2380175

15. McLeod P., Reed N., Dienes Z. The generalized optic acceleration

cancellation theory of catching. Journal of Experimental Psychology:

Human Perception and Performance. 2006; 32(1): 139–148. Available at:

DOI:10.1037/0096-1523.32.1.139

16. Kistemaker DA., Faber H., Beek PJ. Catching fly balls: A simulation study

of the Chapman strategy. Human Movement Science. 2009; 28(2): 236–

249. Available at: DOI:10.1016/j.humov.2008.11.001

17. Zaal FTJM., Michaels CF. The Information for Catching Fly Balls: Judging

and Intercepting Virtual Balls in a CAVE. Journal of Experimental

Psychology: Human Perception and Performance. 2003; 29(3): 537–555.

Available at: DOI:10.1037/0096-1523.29.3.537

18. Nemec B., Zorko M., Zlajpah L. Learning of a ball-in-a-cup playing robot.

19th International Workshop on Robotics in Alpe-Adria-Danube Region

(RAAD 2010). IEEE; 2010. pp. 297–301. Available at:

DOI:10.1109/RAAD.2010.5524570

19. Flash T., Hochner B. Motor primitives in vertebrates and invertebrates.

Current Opinion in Neurobiology. December 2005; 15(6): 660–666.

Available at: DOI:10.1016/j.conb.2005.10.011

20. Kober J., Peters J. Policy search for motor primitives in robotics. Machine

Learning. 6 July 2011; 84(1–2): 171–203. Available at:

DOI:10.1007/s10994-010-5223-6

59

21. Peters J., Schaal S. Reinforcement Learning for Parameterized Motor

Primitives. The 2006 IEEE International Joint Conference on Neural

Network Proceedings. IEEE; 2006. pp. 73–80. Available at:

DOI:10.1109/IJCNN.2006.246662

22. Ijspeert AJ., Nakanishi J., Schaal S. Movement imitation with nonlinear

dynamical systems in humanoid robots. Proceedings 2002 IEEE

International Conference on Robotics and Automation (Cat.

No.02CH37292). IEEE; pp. 1398–1403. Available at:

DOI:10.1109/ROBOT.2002.1014739

23. Kim S., Shukla A., Billard A. Catching objects in flight. IEEE Transactions

on Robotics. IEEE; 2014; 30(5): 1049–1065. Available at:

DOI:10.1109/TRO.2014.2316022

24. Bäuml B., Wimböck T., Hirzinger G. Kinematically optimal catching a flying

ball with a hand-arm-system. IEEE/RSJ 2010 International Conference on

Intelligent Robots and Systems, IROS 2010 - Conference Proceedings.

2010; : 2592–2599. Available at: DOI:10.1109/IROS.2010.5651175

25. Bäuml B., Schmidt F., Wimböck T., Birbach O., Dietrich A., Fuchs M., et al.

Catching flying balls and preparing coffee: Humanoid Rollin’ Justin

performs dynamic and sensitive tasks. Proceedings - IEEE International

Conference on Robotics and Automation. 2011; (1): 3443–3444. Available

at: DOI:10.1109/ICRA.2011.5980073

26. Birbach O., Frese U., Bäuml B. Realtime Perception for Catching a Flying

Ball with a Mobile Humanoid. Proceedings - IEEE International Conference

on Robotics and Automation. 2011; : 5955–5962. Available at:

DOI:10.1109/ICRA.2011.5980138

27. Birbach O. Tracking and Calibration for a Ball Catching Humanoid Robot.

2012; 3(November).

28. Sensors - Wiki for iCub and Friends. Available at:

http://wiki.icub.org/wiki/Sensors (Accessed: 13 March 2019)

29. Kober J., Peters J. Imitation and Reinforcement Learning. IEEE Robotics

& Automation Magazine. June 2010; 17(2): 55–62. Available at:

DOI:10.1109/MRA.2010.936952

60

30. Kober J., Glisson M., Mistry M. Playing catch and juggling with a humanoid

robot. 2012 12th IEEE-RAS International Conference on Humanoid Robots

(Humanoids 2012). IEEE; 2012. pp. 875–881. Available at:

DOI:10.1109/HUMANOIDS.2012.6651623

31. Zeng A., Song S., Lee J., Rodriguez A., Funkhouser T. TossingBot:

Learning to Throw Arbitrary Objects with Residual Physics. 27 March 2019;

Available at: http://arxiv.org/abs/1903.11239

32. Hock O., Šedo J. Forward and Inverse Kinematics Using Pseudoinverse

and Transposition Method for Robotic Arm DOBOT. Kinematics. 2017;

Available at: DOI:10.5772/intechopen.71417

33. DOBOT. Dobot Magician Specifications and Shipping List. 2019. Available

at: https://www.dobot.cc/dobot-magician/specification.html (Accessed: 21

March 2019)

34. Windows MK for. Interface Guidelines. Human interface Guidelines. 2013;

v1.8: 1–142.

35. Raspberry Pi Foundation. Raspberry Pi 3 Model B. 2019. Available at:

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ (Accessed:

21 March 2019)

36. Documentation - ROS Wiki. Available at: http://wiki.ros.org/ (Accessed: 12

March 2019)

37. Open Source Robotics Foundation. kinetic/Installation - ROS Wiki. 2018.

Available at: http://wiki.ros.org/kinetic/Installation (Accessed: 20 March

2019)

38. Open Source Robotics Foundation. kinetic/Installation/Ubuntu - ROS Wiki.

2017. Available at: http://wiki.ros.org/kinetic/Installation/Ubuntu (Accessed:

20 March 2019)

39. Ling X., Zhao Y., Gong L., Liu C., Wang T. Dual-arm cooperation and

implementing for robotic harvesting tomato using binocular vision. Robotics

and Autonomous Systems. April 2019; 114: 134–143. Available at:

DOI:10.1016/j.robot.2019.01.019 (Accessed: 20 March 2019)

40. ModMyPi LTD. HC-SR04 Ultrasonic Range Sensor on the Raspberry Pi.

2014. Available at: https://www.modmypi.com/blog/hc-sr04-ultrasonic-

61

range-sensor-on-the-raspberry-pi (Accessed: 20 March 2019)

41. Not Enough Tech. Connect Raspberry Pi to laptop PC in 4 simple steps.

2016. Available at: https://notenoughtech.com/raspberry-pi/connect-

raspberrypi-pc/ (Accessed: 20 March 2019)

42. Open Source Robotics Foundation.

simulator_gazebo/SystemRequirements - ROS Wiki. Available at:

http://wiki.ros.org/simulator_gazebo/SystemRequirements (Accessed: 21

March 2019)

43. Dobot. Dobot Magician Specifications and Shipping List. 2019. Available

at: https://www.dobot.cc/dobot-magician/specification.html (Accessed: 21

April 2019)

44. Shenzhen Yuejiang Technology Co. L. Dobot Magician User Manual. 2017;

: 138.

45. Granja M., Chang N., Granja V., Duque M., Llulluna F. Comparison

between Standard and Modified Denavit-Hartenberg Methods in Robotics

Modelling. Proceedings of the 2nd World Congress on Mechanical,

Chemical, and Material Engineering. 2016; 1(1): 1–10. Available at:

DOI:10.11159/icmie16.118

46. Qassem MA., Abuhadrous I., Elaydi H. Modeling and simulation of 5 DOF

educational robot arm. Proceedings - 2nd IEEE International Conference

on Advanced Computer Control, ICACC 2010. 2010; 5(April 2015): 569–

574. Available at: DOI:10.1109/ICACC.2010.5487136

47. Dobot.cc. [OFFICIAL]Dobot Download Center. 2019. Available at:

https://www.dobot.cc/downloadcenter.html?sub_cat=72#sub-download

(Accessed: 9 May 2019)

48. Henriques JF., Caseiro R., Martins P., Batista J. IEEE TRANSACTIONS

ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 High-Speed

Tracking with Kernelized Correlation Filters. Available at:

http://www.robots.ox.ac.uk/~joao/publications/henriques_tpami2015.pdf

(Accessed: 9 May 2019)

49. Opencv Community. OpenCV: cv::TrackerKCF Class Reference. 2019.

Available at:

62

https://docs.opencv.org/3.4/d2/dff/classcv_1_1TrackerKCF.html

(Accessed: 9 May 2019)

50. Neves AJR., Trifan A., Dias P., Azevedo JL. Detection of Aerial Balls in

Robotic Soccer Using a Mixture of Color and Depth Information. 2015;

Available at: DOI:10.1109/ICARSC.2015.13 (Accessed: 11 April 2019)

51. OpenCV community. OpenCV: Thresholding Operations using inRange.

2018. Available at:

https://docs.opencv.org/3.4.3/da/d97/tutorial_threshold_inRange.html

(Accessed: 9 May 2019)

52. opencv dev team. Hough Circle Transform — OpenCV 2.4.13.7

documentation. 2019. Available at:

https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/h

ough_circle.html (Accessed: 9 May 2019)

53. Opencv Dev Team. OpenCV: cv::SimpleBlobDetector Class Reference.

2019. Available at:

https://docs.opencv.org/3.4.3/d0/d7a/classcv_1_1SimpleBlobDetector.htm

l (Accessed: 9 May 2019)

54. OpenKinect community. OpenKinect. 2012. Available at:

https://openkinect.org/wiki/Main_Page (Accessed: 16 April 2019)

55. Owen JP., Ryu WS. The effects of linear and quadratic drag on falling

spheres: An undergraduate laboratory. European Journal of Physics. 2005;

26(6): 1085–1091. Available at: DOI:10.1088/0143-0807/26/6/016

56. Yang H., Fan M., Liu A., Dong L. General formulas for drag coefficient and

settling velocity of sphere based on theoretical law. International Journal of

Mining Science and Technology. China University of Mining & Technology;

2015; 25(2): 219–223. Available at: DOI:10.1016/j.ijmst.2015.02.009

57. Scipy.org. scipy.integrate.odeint. 2019. Available at:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odein

t.html (Accessed: 26 March 2019)

58. Belgacem CH. Analysis of projectile motion with quadratic air resistance

from a nonzero height using the Lambert W function . Journal of Taibah

University for Science. Taibah University; 2016; 11(2): 328–331. Available

63

at: DOI:10.1016/j.jtusci.2016.02.009

59. Joseph L., Cacace J. Mastering ROS for robotics programming : design,

build, and simulate complex robots using Robot Operating System.

60. P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli GR.

MeshLab: an Open-Source Mesh Processing Tool. Sixth Eurographics

Italian Chapter Conference. 2008; : 129–136. Available at:

DOI:10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

61. Blender. Home of the Blender project. 2019. Available at:

https://www.blender.org/ (Accessed: 9 April 2019)

62. Open Source Robotics Foundation. Gazebo Tutorial : URDF in Gazebo.

2014. Available at: http://gazebosim.org/tutorials/?tut=ros_urdf (Accessed:

21 April 2019)

63. Open Source Robotics Foundation. Gazebo Tutorial : ROS control. 2014.

Available at: http://gazebosim.org/tutorials/?tut=ros_control (Accessed: 10

April 2019)

64. Open Source Robotics Foundation. rqt - ROS Wiki. 2016. Available at:

http://wiki.ros.org/rqt (Accessed: 10 April 2019)

65. rviz - ROS Wiki. 2018. Available at: http://wiki.ros.org/rviz (Accessed: 10

May 2019)

66. Ioan A. Sucan and Sachin Chitta. MoveIt. 2019. Available at:

http://moveit.ros.org (Accessed: 2 April 2019)

67. Open Source Robotics Foundation. Animated Box. 2014. Available at:

http://gazebosim.org/tutorials?tut=animated_box (Accessed: 2 May 2019)

68. Pygame community. About - pygame wiki. 2018. Available at:

https://www.pygame.org/wiki/about (Accessed: 10 May 2019)

69. Wu Y., Mansimov E., Liao S., Grosse R., Ba J. Scalable trust-region

method for deep reinforcement learning using Kronecker-factored

approximation.

70. Konda VR., Tsitsiklis JN. Actor-Critic Algorithms.

71. Chen J., Chao L. Positioning error analysis for robot manipulators with all

rotary joints. Proceedings. 1986 IEEE International Conference on

Robotics and Automation. Institute of Electrical and Electronics Engineers;

64

pp. 1011–1016. Available at: DOI:10.1109/ROBOT.1986.1087544

(Accessed: 10 May 2019)

72. Dobot. Dobot Magician Specifications and Shipping List | DOBOT. 2019.

Available at: https://www.dobot.cc/dobot-magician/specification.html

(Accessed: 10 May 2019)

73. Zamora I., Gonzalez Lopez N., Mayoral Vilches V., Cordero AH., Robotics

E. Extending the OpenAI Gym for robotics: a toolkit for reinforcement

learning using ROS and Gazebo. Available at:

http://erlerobotics.com/whitepaper/robot_gym.pdf (Accessed: 26 March

2019)

APPENDICES

Appendix A – Inverse kinematics of Dobot Magician

The indications given to the robot to reach a specific position T with a specific

orientation Q are,

• T = [𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡] (the target point)

• 𝜓 (angle between 𝑥1 and link {5}) to define the orientation Q

From Figure A.1, 𝜃1 can be derived,

𝜃1 = 𝐴𝑡𝑎𝑛2(𝑦𝑡 , 𝑥𝑡)

65

Another relation can be derived from Figure A.1,

𝑟𝑡 = √(𝑥𝑡)2 + (𝑦𝑡)2

The relationship between the orientation angle and the joint angles is,

𝜓 = 𝜃2 + 𝜃3 + 𝜃4

The coordinates of the wrist joint (03) can be determined,

𝑟4 = 𝑟𝑡 − 𝑎4 cos(𝜓)

𝑧4 = 𝑧𝑡 − 𝑎4 sin(𝜓)

The angles in the triangle 010203 can then be found,

𝛼 = 𝐴𝑡𝑎𝑛2(𝑧4 − 𝑑1, 𝑟4)

The distance 0103 is,

𝑠 = √(𝑧4 − 𝑑1)2 + (𝑟4)2

Using the law of cosines in 010203,

𝛽 =
𝑠2 + 𝑎2

2 − 𝑎3
2

2 ∗ 𝑎2 ∗ 𝑠
; sin(𝛽) = ±√1 − cos(𝛽)2 ; 𝛽 = 𝐴𝑡𝑎𝑛2(sin(𝛽) , cos(𝛽))

𝜃2 can then be determined,

00 𝑥0

𝑦0

𝐸

𝑥𝑡

𝑦𝑡

𝑟𝑡

𝜃1

Figure A.1 - Dobot top view

66

𝜃2 = 𝛼 ± 𝛽

In order to determine 𝜃3, the following expressions are used,

𝑟4 = 𝑟𝑡 − 𝑎4 cos(𝜓) = 𝑎2 cos(𝜃2) + 𝑎3 cos(𝜃2 + 𝜃3)

𝑧4 = 𝑧𝑡 − 𝑎4 sin(𝜓) = 𝑎2 sin(𝜃2) + 𝑎3 sin(𝜃2 + 𝜃3) + 𝑑1

𝑠 = √(𝑧4 − 𝑑1)2 + (𝑟4)2

𝜃3 can be derived,

cos(𝜃3) =
𝑠2 − 𝑎2

2 − 𝑎3
2

2 ∗ 𝑎2 ∗ 𝑎3
; sin(𝜃3) = ±√1 − cos(𝜃3)2 ; 𝜃3 = 𝐴𝑡𝑎𝑛2(sin(𝜃3) , cos(𝜃3))

According to Figure A.2,

𝜃3 = ± 𝐴𝑡𝑎𝑛2(sin(𝜃3) , cos(𝜃3))

Finally,

𝜃4 = 𝜓 − 𝜃2 − 𝜃3

00
𝑥0

𝑦0 𝑑1

01

𝑧1

𝑥1

𝑟 𝑟𝑡

𝑧𝑡

𝑟4

𝑧4

𝑎2

𝑎3

𝑎4

02

03

𝐸

𝜃2

𝜃3

𝜓

𝛼

𝛽

𝑠

Figure A.2 - Dobot side view

67

The solutions of the inverse kinematics are gathered in Table A.1.

Table A.1 - Solutions of the inverse kinematics (Dobot)

First solution Second solution

𝜃1

𝜃2 = 𝛼 − 𝛽

𝜃3

𝜃4 = 𝜓 − 𝜃2 − 𝜃3

𝜃1_𝑏𝑖𝑠

𝜃2_𝑏𝑖𝑠 = 𝛼 + 𝛽

𝜃3_𝑏𝑖𝑠 = − 𝜃3

𝜃4_𝑏𝑖𝑠 = 𝜓 − 𝜃2𝑏𝑖𝑠
− 𝜃3_𝑏𝑖𝑠

According to the tests performed on the Dobot Magician, the angle 𝜓 remains

constant (𝜓 = 0), always parallel to the ground (it is not controlled, it is

mechanically maintained to this position).

68

Appendix B – Risk assessment

The risk assessment for the project is shown in Table B.1.

The risk rating is based on the following:

• 1 = Negligible

• 2 = Minor

• 3 = Medium

• 4 = Major

• 5 = Severe

Table B.1 - Risk assessment

Task / event Significant Hazards
Who is

affected
Existing controls Risk rating

Additional

control

needed?

Human

/ Robot
None / describe Consequence Likelihood

Total =

C x L
Risk mitigation

Robot testing Break robot

components

R No spare

components,

simulation

3 1 3 Get new

components

(fast)

 Injury the human R Safety covers,

health and

safety rules

1 1 1 N/A

 Brightness

(blinding sensors)

R /P Light controlled

testing room

1 1 1 N/A

Software

implementati

on

Compatibility

issues (platforms,

compilation,

language,

updates)

R Thorough

literature review

2 2 4 N/A

69

 Poor

documentation

(programs)

P 2 1 2 N/A

 Sensor failure

(outrange,

outbounds, noise)

R Robust

algorithm

1 3 3 N/A

 Output

malfunction (arm

moving not as

expected)

H / R Boundary

conditions

2 2 4 N/A

 Processing unit

overflow (ML

related, memory)

R Preliminary

memory

estimation

2 2 4 N/A

Hardware

Implementati

on

Electromechanica

l failure / damage

(wires,

components,

overheating),

R Regular

maintenance

3 1 3 N/A

 Loose wire R cable ties 2 1 2 N/A

 Overheating

components

R Regular

maintenance,

cooling fan.

2 1 2 N/A

 Missing parts R Spares 1 2 2 N/A

 Faulty parts R Return policy 2 1 2 Buy a new

one

Mechanical

interface failure

R Preliminary

design and

maintenance

2 1 2 Redesign

Inventory

stock

supervision

Unavailable

components /

technology

P Find alternatives 1 1 1 N/A

 Lack of resources P 1 1 1 N/A

70

Budgeting Lack of funds to

get components/

software

P Find cheap

alternatives

2 1 2 N/A

 Unexpected rise

in cost

P 2 1 2 N/A

Scheduling Go beyond

deadline

P Respect Gantt 2 1 2 N/A

 Low efficiency of

resource

allocation and

organisation

P Motivate team

members

3 1 3 N/A

 Unrealistic

project plan

schedule

P Update Gantt 2 1 2 N/A

 Delayed meetings P Inform about

delays

1 1 1 N/A

Organization

Management

Unexpected

absence / Long

absence

P Supervisors

advice

1 1 1 N/A

 Poor/lack/ error

of

Communication

(supervisors

and/or students)

P Supervisors

advice

1 1 1 N/A

71

Appendix C – Time management

C.1 Overview of the main tasks

C.2 Literature review

Figure C.1 - Overview Gantt

Figure C.2 - Literature review Gantt

72

C.3 Specification requirements

C.4 Implementation strategy

Figure C.3 - Specification requirements Gantt

Figure C.4 - Implementation strategy Gantt

73

C.5 Implementation and coding

C.6 Testing verification validation

Figure C.5 - Implementation and coding Gantt

Figure C.6 - Testing verification validation Gantt

74

C.7 Deployment and documentation

Figure C.7 - Deployment and documentation Gantt

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	1 Introduction
	1.1 Concept of ball catching
	1.2 Scope and objectives

	2 Literature review
	2.1 Historical
	2.2 Renowned research

	3 Project management
	3.1 Project initialisation
	3.2 Task allocation
	3.3 Time management

	4 System specifications
	4.1 Performance
	4.2 External Interfaces
	4.3 Hardware System
	4.3.1 Dobot Magician
	4.3.2 Microsoft Kinect
	4.3.3 Raspberry Pi

	4.4 Functions
	4.5 Architecture
	4.6 Implementation strategy

	5 Implementation and testing
	5.1 Overview of the system
	5.2 Physical ITNB
	5.2.1 Mechanical structure
	5.2.2 Joint control
	5.2.3 Robot Perception Overview
	5.2.4 Object detection - tracker
	5.2.5 Object detection – color detection in each frame
	5.2.6 Depth acquisition and coordinates transformation
	5.2.7 Ball trajectory estimation
	5.2.8 ROS communication
	5.2.9 Reinforcement learning perspective

	5.3 Virtual ITNB
	5.3.1 Mechanical model in Gazebo
	5.3.2 Joint control in with Rviz and Gazebo-ros control
	5.3.3 Ball motion in Gazebo
	5.3.4 Reinforcement Learning in 2D environment and Gazebo

	6 Validation
	6.1 Physical ITNB
	6.1.1 Robot control results
	6.1.2 Object detection results

	6.2 Virtual ITNB
	6.2.1 Net movement (1D control) and ball motion
	6.2.2 Simple reinforcement learning implementation
	6.2.3 Reinforcement Learning perspective for Gazebo

	7 Conclusion
	REFERENCES
	APPENDICES
	Appendix A – Inverse kinematics of Dobot Magician
	Appendix B – Risk assessment
	Appendix C – Time management
	C.1 Overview of the main tasks
	C.2 Literature review
	C.3 Specification requirements
	C.4 Implementation strategy
	C.5 Implementation and coding
	C.6 Testing verification validation
	C.7 Deployment and documentation

